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Abstract

We study an election with two perfectly informed candidates. Voters share
common values over the policy outcome of the election, but possess arbitrarily
little information about which policy is best for them. Voters elect one of the can-
didates, effectively choosing between the two policies proposed by the candidates.
We explore under which conditions candidates always propose the voters’ opti-
mal policy. The model is extended to include strategic voting, policy-motivated
candidates, imperfectly informed candidates, and heterogeneous preferences.
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The secret of the demagogue is to appear as dumb as his audience so
that these people can believe themselves as smart as he.

Kraus (1990, p. 113)

A truth that’s told with bad intent
Beats all the lies you can invent.

William Blake, ‘Auguries of Innocence’

1 Introduction

Proponents of representative democracy argue that voters are poorly informed about
which policy is best for them, whereas candidates are better informed. Candidates pro-
pose platforms that reflect voters’ preferences and lead the voters to the correct choice.
Skeptics counter that office-seeking candidates pander to voters’ beliefs, proposing
whatever voters believe to be best. We show that even though incentives to pander
exist, under mild conditions candidates propose the best policy for the voters.

For concreteness, suppose there are only two policies, 0 and 1, each equally likely
to be optimal for the voters. Two candidates observe which policy is best for the
voters. Voters privately observe one of two signals, 0 or 1. They observe signal 1 with
probability .9 if the optimal policy is 1 and .6 if the optimal policy is 0.

Each candidate makes a proposal to the voters. Voters choose between the can-
didates by majority vote and the winner’s proposal is implemented. Candidates are
office-motivated : they only want to win the election. Voters want to choose the best
policy.

Is there an equilibrium where the optimal policy for the voters is always imple-
mented? At a bare minimum, at least one candidate in each state must propose the
optimal policy. Yet, candidates might be tempted to pander to the majority of the
voters, who always observe signal 1 and believe that policy 1 is optimal. That is, policy
0 might never be proposed by any candidate.

We now show that there exist equilibria where both candidates propose the optimal
policy and, if one deviates, she loses.1 For example, when the two proposals are equal,
voters vote for each candidate with probability 1/2. If the proposals are different, a

1We focus on this kind of revealing equilibria. Equilibria where candidates propose the optimal
policy because all policies win with probability 1/2 are not robust to any small amount of candidates’
policy-motivation.
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voter who observes signal 1 votes for the candidate proposing policy 1 with probability
2/3; a voter who observes signal 0 votes for the candidate proposing policy 0. To see
why this is an equilibrium, note that if the candidates propose two different policies, the
expected share of votes for the candidate proposing policy 1 is .9× (2/3) = .6 if policy
1 is optimal and .6×(2/3) = .4 if policy 0 is optimal. That is, whenever the candidates
make differing proposals, the one optimal for the voters wins. Thus, whatever the
strategy of her opponent, a candidate prefers to propose the policy optimal for the
voters.

This equilibrium relies on voters’ beliefs off the equilibrium path, when the two
proposals are different. The chosen beliefs might seem arbitrary. Yet, if with positive
probability candidates are of a truthful type that always proposes the voters’ optimal
policy, then all candidates propose the optimal policy in all equilibria. The basic
intuition is as follows. Suppose that voters expect office-motivated candidates to pander
and always propose policy 1. Whenever a candidate proposes another policy, the most
likely scenario is that she is of the truthful type. Voters must then conclude that her
proposal is optimal. Thus, in all sequential equilibria, candidates propose the optimal
policy for the voters.

This paper generalizes this intuition to a generic environment with finitely many
states and policies. Our results are robust to several extensions. Section 5.1 considers
a finite number of strategic voters (voters who take into account the probability that
their vote is pivotal between two candidates). This layer of strategic interaction selects
among the fully revealing equilibria by imposing restrictions on the equilibrium voting
strategies. Section 5.2 shows that the results hold if the candidates observe a common
imperfect signal. In this case, candidates propose what the voters would choose if
they too could observe the candidates’ signal. Section 5.3 relaxes the assumption
that candidates are solely office-motivated and shows that the results are robust to
the introduction of a limited amount of policy-motivation. Finally, Section 5.4 allows
voters to have heterogeneous preferences.

To appreciate how various features of the model contribute to the results, let us
first compare our model to the closely related ones in Heidhues and Lagerlöf (2003)
and Leslier and Van der Straten (2004). Both papers study a model with binary
states, signals, and policies, and imperfectly informed candidates. Consider first the
implications of their models for the case of perfectly informed candidates. In the
example above, Heidhues and Lagerlöf (2003) show that, if voters have no private
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information, there exist only equilibria where the candidates propose the same policy
across states. This is because the expected share of votes for the candidate proposing
policy 1 is fixed across states. It is a majority when 1 is optimal if and only if it is
a majority also when 0 is optimal. It follows that, in contrast with our results, there
is at least one state where the optimal policy for the voters is not proposed by any
candidate.2

Leslier and Van der Straten (2004) show that both candidates propose the optimal
policy, but only when voters possess sufficiently precise information. They assume
that a majority of voters always receive the correct signal.3 In equilibrium, if the two
proposals are different, a voter who observes signal 1 votes for the candidate proposing
1; a voter who observes signal 0 votes for the candidate proposing policy 0. Candidates
are then induced to propose the optimal policy in each state. It is worth noticing that
this argument does not hold in our numerical example: if voters play this strategy, a
candidate who proposes policy 1 expects a share of votes equal to .9 in state 1 and .6
in state 0.

We build upon this intuition and show that even when voters posses arbitrarily
imprecise information, they can coordinate their vote and induce the candidates to
propose the optimal policy in each state. We do this at the expense of assuming
that each candidate is perfectly informed about what her opponent knows. This does
not mean that independent trembles of the candidates would destroy a fully revealing
equilibrium. On the contrary, vanishingly small independent trembles are exactly what
imposes restrictions on voters’ beliefs in the fully revealing equilibrium.4

The key feature of our model is that voters have information that is arbitrarily im-
precise, but sufficient to collectively choose the best among two policies. This closely
relates to the Condorcet Jury Theorem literature.5 In the jury environment, voters

2To be precise, these are the only equilibria where, if a candidate deviates, she loses. There also
exists an equilibrium where candidates propose the optimal policy because whenever the two proposals
are different, voters vote for each candidate with probability exactly 1/2.

3More precisely, after observing their signals, the majority of voters always prefers the correct
policy. "Of course, it does not mean that our conclusion remains valid if, for instance, one state is
very unlikely or has very important consequences in terms of utility compared to the other." (p. 433)

4Our solution concept is Sequential Equilibrium. As shown by Kohlberg and Reny (1997), in
consistent assessments, events are independent in relative probability. Our equilibria are also perfect,
meaning that the best responses of the voters (and not only their beliefs) are robust to independent
trembles of the candidates (see Section 2, Online Appendix).

5Originally formulated by Condorcet (1785), this has been extended to strategic voting by Austen-
Smith and Banks (1996), Duggan and Martinelli (2001), Feddersen and Pesendorfer (1997), McLennan
(1998), and Meirowitz (2002).
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choose between two fixed policies and are uncertain about which one is best. Fedder-
sen and Pesendorfer (1997) show that strategic voters coordinate their votes and choose
the best of the two policies. We show that the introduction of strategic competition
among candidates allows for simple, sincere voting strategies that guarantee that both
candidates propose the optimal policy among any number of alternatives. With this
comparison in mind, our message can be thought of as follows. Since voters have suf-
ficient information to choose the best among two policies, office-motivated candidates
have an incentive to choose the best proposals among any number of policies: when
the two proposals are different, voters choose the best of the two.

A different approach to our problem is to assume a continuous one-dimensional
state-policy space and imperfectly informed candidates. In a recent work, Kartik et al.
(2013) show that, under some conditions on the information available to the candidates,
there exists no symmetric, fully revealing equilibrium. Rather, with sufficiently poor
information in the hands of the voters, office-motivated candidates have an incentive to
exaggerate their private information. That is, candidates make proposals more distant
from the voters’ prior than suggested by their private signal.

Bond and Eraslan (2010) also consider the problem of using proposals to signal
private information. In their model, a single proposer and many voters have privately
known preferences over the policy space. The proposer chooses a policy voters can
approve or reject, in which case they remain with the status quo. The key result is
that unanimity rule makes voters (and sometimes the proposer) better off, because it
induces the proposer to make more palatable proposals to the voters. We focus on
office-motivated candidates and show that—in line with the jury literature mentioned
above—full information aggregation is achieved under any majority rule but unanimity
(see Section 5.4).6

A different type of pandering occurs when a politician in office implements policies
that voters believe to be optimal. She does so because voters interpret it as a signal
that she has preferences aligned to their own (Maskin and Tirole, 2004; Morris, 2001)
or that she is very competent (Canes-Wrones et al., 2001). Hence, even if the politician
has the same preferences as the voters and is very competent, she might choose sub-
optimal policies in order to be re-elected.7

6Other examples of works which combine strategic voting with candidates strategic behavior are
Austen-Smith and Banks (1988) and Ghosh and Tripathi (2012).

7Binswanger and Prufer (2009), Frisell (2004), and Harrington (1993) are examples of other works
considering the incentives of an incumbent politician to target voters’ prior beliefs.
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We assume that candidates fully commit to the policy they propose. Otherwise,
if candidates can change policy after the election (or in future ones) voters could use
their vote to signal their preferences to the candidates (Castanheira, 2003; Meirowitz
and Shotts, 2009; Piketty, 2000; Razin, 2003; Shotts, 2006).8 Similarly, we do not allow
voters to communicate among themselves before voting (Austen-Smith and Feddersen,
2006; Coughlan, 2000; Doraszelski et al., 2003; Gerardi and Yariv, 2007) or to abstain
from voting (Krishna and Morgan, 2011, 2012). Last, we assume that voters have
private information about the policies. A related question is whether voters would
acquire such information if costly (Martinelli, 2006; Szentes and Koriyama, 2009) or
biased (Oliveros and Várdy, 2012).

2 The Model

There are two candidates, A and B, and a continuum9 of voters indexed by i. At
the beginning, a state θ is drawn from a finite set Θ with probability Pr (θ) > 0 for
all θ ∈ Θ. Candidates privately observe the state θ. Each voter i observes a private
signal si, conditionally independent and identically distributed over a finite set S, with
|S| > 1.

Each candidate simultaneously proposes a policy from a finite set E . We refer to
candidate c’s proposal as xc. Each voter observes the two proposals and casts a single
vote for one of the candidates. The candidate who receives the largest share of votes is
elected with probability 1. In case of a tie, each candidate is elected with probability
1/2. The winner’s proposal is implemented.

Voters share common values and their preferences depend on which policy is im-
plemented, conditional on the state. Voter i’s utility is a function u : E ×Θ→ R. The
voters’ optimal policy in state θ is e∗ (θ).10 For any policy e, the (possibly empty) set
of states where e is optimal is Θe ( Θ.

Each candidate c ∈ {A,B} can be of two types. With probability π, she is truthful
and always proposes e∗ (θ); otherwise she is a strategic, office-motivated agent, and

8A related question is whether electoral competition induces candidates to lie about their intent
once elected (e.g., Callander and Wilkie, 2007).

9Given the assumption (below) on voting behavior, assuming a continuum of voters is equivalent
to there being a single voter and approximates there being sufficiently many (sincere) voters. Section
5.1 extends the results to a large, finite number of fully strategic voters.

10Uniqueness of e∗ (θ) is not necessary for our results (see Footnote 14 in Section 3). Yet, it greatly
simplifies the exposition.
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receives a rent R > 0 if elected. A candidate’s type is her private information. With
some abuse of notation, we refer to the pure strategy of candidate c as xc (θ).

We assume that voters are sincere: voter i votes for candidate c if E [u (xc, θ) | x, si] >
E [u (x−c, θ) | x, si], where x−c is the proposal of candidate c’s opponent and x is the
candidates’ profile of proposals. A voter can mix between the two candidates if the
two proposals give the same expected payoff. If the proposals are identical (xA = xB),
each voter votes for each candidate with probability 1/2.11

The timing of the electoral game is as follows: (1) nature chooses a state θ ∈ Θ

and candidates’ types; (2) each candidate observes the state and her type; each voter
observes his signal; (3) candidates A and B propose proposals xA and xB; (4) voters
observe the proposals and cast votes in favor of either candidate A or B; (5) the
candidate with the largest share of votes is elected and her proposal is implemented.

We impose very little structure on the conditional distribution of signals. First, we
assume that the distribution has full support over S: Pr (s | θ) > 0 for all s ∈ S and
θ ∈ Θ. Second, if it is known that either policy e or e′ are optimal, then signals are not
confusing. That is, we rule out the possibility of signals s and s′ such that s suggests
more than s′ that (i) the state is θ ∈ Θe rather than θ′ ∈ Θe′ , and also (ii) that the
state is θ′′ ∈ Θe′ rather than θ′′′ ∈ Θe. Formally,

Assumption 1. Let e, e′ (e 6= e′) be two policies and s, s′ (s 6= s′) be two signals.
One of the following holds.

1.
Pr (s | θ)
Pr (s | θ′)

>
Pr (s′ | θ)
Pr (s′ | θ′)

, for all θ ∈ Θe and θ′ ∈ Θe′ .

2.
Pr (s | θ)
Pr (s | θ′)

<
Pr (s′ | θ)
Pr (s′ | θ′)

, for all θ ∈ Θe and θ′ ∈ Θe′ .

In the remainder of the paper, we characterize the set of electoral equilibria, where
this is the set of sequential equilibria (Kreps and Wilson, 1982) where voters play
symmetric voting strategies (i.e., the same strategy across voters). While we impose
no further refinement on the equilibrium concept, the equilibria described in this paper
also satisfy trembling hand perfection, intuitive criterion, and properness.12

11The set of equilibrium policy outcomes is not affected by this assumption. Yet, it eliminates
equilibria where the winning candidate always proposes the voters’ optimal policy, while the loser
makes any proposal because he loses even if he makes the correct one.

12Perfection would not add further restrictions on voters’ beliefs because (i) sequential equilibria
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A natural question is whether there are equilibria in which both candidates propose
the voters’ optimal policy because this proposal wins against any other proposal. We
call such an equilibrium fully revealing.

Definition 1. An electoral equilibrium is fully revealing if in each state θ (i) both
candidates propose the voters’ optimal policy e∗ (θ), but (ii) if a candidate deviates
and proposes a different policy, then she loses for sure.

One might argue that it is not hard to construct an equilibrium with property
(i) but in which a candidate who deviates does not necessarily lose the election. We
would like to stress that such an equilibrium is not robust to the introduction of any
policy-motivation for the candidate.

3 Fully Revealing Equilibria

In this section, we show existence of fully revealing equilibria.

Proposition 1. For all π ≥ 0, there exists a fully revealing equilibrium.

Proof. All proofs are in Appendix, except when noted.

We provide the key elements to construct the equilibrium for a case of binary signals
and one-to-one e∗ (θ). In each state θ, candidates propose the voters’ optimal policy
e∗ (θ) . If both candidates make the same proposal, each voter votes for each candidate
with probability 1/2. If candidates make different proposals, e and e′, with Θe = {θ}
and Θe′ = {θ′}, voters randomize between the two candidates under one signal and
vote deterministically under the other.

Due to Assumption 1, we can relabel elements in {e, e′} and S = {s, s′} such that
signal s is more indicative of θ, Pr (s | θ) > Pr (s | θ′), and s is more common under
state θ, Pr (s | θ) > 1/2. With this normalization, voters with signal s′ vote for e′ with
probability 1; voters with signal s vote for e with probability

a ∈
(

1

2 Pr (s | θ)
,

1

2 Pr (s | θ′)

)
∩ (0, 1) 6= ∅.

already have inbuilt vanishingly small trembles of the candidates, and (ii) in any equilibrium mentioned
in this paper, voters’ best responses are robust to at least one sequence of such trembles (see Section 2,
Online Appendix). Intuitive criterion and properness have no bite because candidates have no policy
preferences.
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Voters’ beliefs are as follows. If both candidates propose the same policy e, then they
believe the state to be θ. If the candidates make different proposals, e and e′, voters
believe the state to be either θ or θ′ with probabilities that make them indifferent
between the two policies under signal s.

To see that this is an equilibrium, consider first the choice of the candidates. In
state θ, if a candidate deviates to e′, she loses the election:

1− aPr (s | θ)︸ ︷︷ ︸
votes for e′

< aPr (s | θ)︸ ︷︷ ︸
votes for e

.

Likewise, in state θ′, if a candidate deviates to e, she loses the election:

1− aPr (s | θ′)︸ ︷︷ ︸
votes for e′

> aPr (s | θ′)︸ ︷︷ ︸
votes for e

.

On the equilibrium path, voters’ beliefs are calculated using Bayes’ rule. Out of equi-
librium, when the candidates make proposals e and e′ 6= e, voters give probability
0 to those states where neither of the proposals is optimal. Intuitively, they expect
candidates’ trembles to be independent. When neither of the two proposals is optimal,
this profile is possible only if both candidates tremble. Thus, as these trembles become
vanishingly small, the profile (e, e′) becomes infinitely more likely when at least one of
the proposals is optimal than when neither is. The relative probabilities of θ and θ′

are such that voters with signal s are indifferent between the two policies. Since s is
the signal more indicative of θ, voters with signal s′ strictly prefer policy e′.

We can extend this argument beyond this case, to a generic environment where a
policy is optimal in many states and there are many signals. Out of equilibrium, when
candidates make proposals e and e′ 6= e, Θe 6= ∅, voters give probability 0 to those
states where neither of the proposals is optimal. Again, this is because the profile
(e, e′) in state θ /∈ Θe ∪ Θe′ is possible only if both candidates tremble. Thus, voters’
beliefs are restricted to states in Θe and Θe′ . By Assumption 1, signals can be ordered
from the one suggesting states in Θe the most to the one suggesting states in Θe′ the
most. Voters with signals suggesting Θe the most will vote for e; voters with signals
suggesting Θe′ the most will vote for e′.

The share of votes for e is larger in states in Θe than in states in Θe′ . This is because
the signals suggesting Θe the most are those observed more often in states in Θe than
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in states in Θe′ .
13,14 Then, for some beliefs, there exists a voting strategy such that this

share is greater than 1/2 if the state is in Θe and less than 1/2 if the state is in Θe′ .15

The voters’ strategies described above induce the candidates to propose the voters’
optimal policy. Indeed, let the voters play such a strategy. This induces a simultane-
ous move, constant-sum game between the candidates with a unique and strict Nash
equilibrium where both candidates propose the voters’ optimal policy. In this sense,
whenever the candidates expect the voters to follow this strategy on average, they
always propose the voters’ optimal policy.16

Proposition 2. For all π ≥ 0, there exists a (robust) voting strategy inducing full
revelation in all electoral equilibria where it is played.

Proposition 1 says that there exists an equilibrium where both candidates propose
the optimal policy. In fact, there exists a continuum of such equilibria differing for the
exact voting strategy. Yet, there also exists a plethora of other equilibria. For example,
candidates propose policy e in all states and voters believe that a candidate trembles
much more likely when e is the optimal policy. Nonetheless, since fully revealing
equilibria exist, inherently truthful candidates are not to be ruled out.

4 The Importance of Being Earnest (π > 0)

We examine which equilibria survive a small but non-zero probability π that each
candidate is truthful. If there are only two states and two policies, all electoral equilibria
are fully revealing.

Proposition 3. If there are 2 states, 2 policies, and π > 0, all electoral equilibria are
fully revealing.

The intuition is as follows. First, in equilibrium there exists at least one state in
which both candidates play the voters’ optimal policy with probability 1. Suppose
otherwise. Then in any state θ at least one candidate plays e∗ (θ′) 6= e∗ (θ) with

13To be precise, they are the signals with Pr (s | θ) /Pr (s | θ′) larger if θ ∈ Θe and θ′ ∈ Θe′ .
14Suppose uniqueness of e∗ (θ) is not satisfied. Then there exists e and e′ such that Θe ∩Θe′ 6= ∅.

When possible, we order the signals from those more in favor of the states when only e is optimal to
those where only e′ is optimal. If instead one policy is optimal whenever the other is, one can simply
let the voters always vote for the policy that is optimal more often.

15For details on how to construct such beliefs, see Part 2, Proof of Proposition 1 in Appendix.
16Lipman and Seppi (1995) call such a voting strategy a robust inference rule.
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positive probability. Thus, in state θ she expects e∗ (θ) to do no better than e∗ (θ′).
By Assumption 1, for any consistent belief of the voters, policy e∗ (θ′) must do strictly
better in state θ′ than in state θ. Thus, the candidate plays e∗ (θ′) with probability 1

in state θ′.
Second, suppose the candidates propose the optimal policy with probability 1 only

in state θ. If a voter observes proposals e∗ (θ) and e∗ (θ′), then he believes that e∗ (θ′)

is optimal, because candidates propose e∗ (θ′) with positive probability only in state
θ′. But then candidates prefer to deviate to e∗ (θ′), since whenever a candidate makes
this proposal, her expected payoff is strictly greater than if she proposes e∗ (θ).17

This argument extends to the general model of Section 2 if we restrict the set of
equilibria to candidates’ symmetric pure strategies. The intuition is similar and for
details we refer to the proof in Appendix.

Proposition 4. If π > 0, all symmetric, pure strategy electoral equilibria are fully
revealing.

5 Extensions

5.1 Fully Strategic Voting

We have so far assumed that voters vote for the candidate whose proposal maximizes
their expected payoff. In this sense, although voters are not naive, they vote sincerely.
The literature on voting equilibria (e.g., Myerson and Weber (1993)) has highlighted
the importance for voters to consider how likely their vote is to change the result of
the election.

We now extend the results of the previous sections to an environment with a finite
number of strategic voters. We conduct the analysis under the assumption that the
number of voters ν follows a Poisson distribution P : N→ [0, 1] with mean ν̄ > 0. The
remainder of the model is identical to Section 2. We characterize the limit of the set
of sequential equilibria as ν̄ becomes large.

There exists a fully revealing equilibrium where voters play sincere voting strategies.

17In state θ, she wins with probability 1 instead of 1/2. In state θ′, she wins with probability
π/2+(1− π) [λ/2 + (1− λ)] instead of (1− π) (1− λ) /2, where λ is the probability that her strategic
opponent plays e∗ (θ′) in state θ′.
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Proposition 5. For all π ≥ 0 and ν̄ sufficiently large, if voters are fully strategic, there
exists a fully revealing electoral equilibrium in which each voter votes for the candidate
whose proposal maximizes his expected payoff.

To fix ideas, focus on a binary case. There are two policies, e and e′, respectively
optimal in θ and θ′. Voters observe one of two signals, s and s′, with Pr (s | θ) >
Pr (s | θ′) and Pr (s | θ) > 1/2.

In the fully revealing equilibrium, candidates propose policy e in state θ and e′ in
state θ′. If both candidates propose the same policy, each voter votes for each candidate
with probability 1/2. If the two proposals are different, voters randomize between the
candidates under one signal and play deterministically under the other.

Call a (s) (respectively, a (s′)) the probability that a voter with signal s (s′) votes
for the candidate proposing e. If Pr (s | θ) + Pr (s | θ′) ≥ 1, then a (s′) = 0 and

a (s) =
1

Pr (s | θ) + Pr (s | θ′)
; (1)

if Pr (s | θ) + Pr (s | θ′) < 1, then

a (s′) =
1− [Pr (s | θ) + Pr (s | θ′)]
2− [Pr (s | θ) + Pr (s | θ′)]

(2)

and a (s) = 1.
To see why this is an equilibrium, note that in each state, when candidates make

different proposals, the one who proposes the optimal policy wins a strict majority of
the votes.

As in the case with sincere voters, whenever the two proposals are different, voters’
beliefs are such that voters are indifferent between the two policies under one of the
two signals. If Pr (s | θ) + Pr (s | θ′) ≥ 1, then voters are indifferent under signal s and
vote for e′ under signal s′; if Pr (s | θ)+Pr (s | θ′) < 1, then voters are indifferent under
signal s′ and vote for e under signal s. Because voters condition their choice on being
pivotal, these strategies are rational only if the event that a vote is pivotal between the
two policies is roughly as likely in one state as in the other. To see this, suppose that
a vote is arbitrarily more likely to be pivotal in state θ than in state θ′. Then a voter
knows that if his vote is ever going to make a difference, it will be in state θ, where
policy e is optimal. Then the voter would rationally choose to vote for the candidate
proposing e, no matter how likely he thinks state θ to be.
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By the Magnitude Theorem (Theorem 1, Myerson, 2000),18 a sufficient condition
for the pivotal probability in the two states to be comparable is that the expected share
of votes for e in state θ equals the expected share of votes for e′ in state θ′:19

a (s) Pr (s | θ) + a (s′) [1− Pr (s | θ)]︸ ︷︷ ︸
votes for e in θ

= 1− a (s) Pr (s | θ′)− a (s′) [1− Pr (s | θ′)]︸ ︷︷ ︸
votes for e′ in θ′

.

That is, the share of votes for the optimal policy is exactly 1/2 roughly as likely in one
state as in the other.

Restricting to sincere strategies (a (s′) > 0 only if a (s) = 1) and imposing that a
majority of the voters chooses the correct policy, we get the strategies in (1) and (2).

We turn now to the case of π > 0. When voters are sincere, arguments about voters’
beliefs (and not strategies) are sufficient to prove that all electoral equilibria are fully
revealing. It is straightforward to extend these arguments to the case of strategic
voters. Intuitively, suppose that there is a pooling equilibrium and voters observe two
different proposals. Whenever this happens, all voters believe that the candidate who
is proposing the unexpected policy is truthful. Therefore, voters strictly prefer to vote
for her, no matter the likelihood of being pivotal. This implies that all candidates
prefer to deviate.

Proposition 6. When voters are fully strategic, if π > 0 and ν̄ is sufficiently large, all
symmetric, pure-strategy electoral equilibria are fully revealing. If there are 2 states, 2

policies, and π > 0, all electoral equilibria are fully revealing.

Proof. The proof follows the ones of Propositions 3 and 4 after noticing that if Pr (Θe | x) =

1 for some policy e, then all voters vote for a candidate proposing policy e if there is
one.

18The Magnitude Theorem states that beliefs concentrate on states with maximum magnitude of
the event that a vote is pivotal between e and e′, mag (pive,e′ | θ).

19From the formula in Section 5 of Myerson, 2000, p. 25,

mag (pive,e′ | θ) =

= −
(√

a (s) Pr (s | θ) + a (s′) [1− Pr (s | θ)]−
√

1− a (s) Pr (s | θ) + a (s′) [1− Pr (s | θ)]
)2

=

= −
(√

1− a (s) Pr (s | θ′) + a (s′) [1− Pr (s | θ′)]−
√
a (s) Pr (s | θ′) + a (s′) [1− Pr (s | θ′)]

)2
=

= mag (pive,e′ | θ′) .
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5.2 Imperfectly-informed Candidates

We relax the assumption that candidates are perfectly informed about the state. To
be precise, we allow the candidates to observe a common imperfect signal. In practice
this means the two candidates do not know the exact distribution of voters’ signals,
but they have access to the same opinion polls and identical reports on the state. This
assumption is also made in related works by Martinelli (2001) and Schultz (1996).20

To fix ideas and avoid confusion between a candidate’s and a voter’s signals, we call
the former a report.

We assume a binary scenario with two states, θ and θ′, two policies, e and e′, and
two signals, s and s′. Candidates do not observe the state θ, but a report in {r, r′}. A
(pure) strategy for candidate c is therefore xc : {r, r′} → {e, e′}.

Call e∗ (r) (e∗ (r′)) the policy that voters would choose, via majoritarian vote, if
they could, in addition to their signals, all observe the report r (r′) of the candidates.
The definition of a truthful candidate we have used so far should be substituted by a
type that always proposes the policy voters would choose via majoritarian vote if they
could, in addition to their signals, all observe the report. Call π′ the probability of
each candidate being of this new truthful type.

Proposition 7. For all π′ ≥ 0, if there are 2 states, 2 policies, and 2 signals, there
exists an electoral equilibrium where candidates always propose the policy voters would
choose via majoritarian vote if, in addition to their signals, they all observed the report.

The basic intuition is that if a candidate sees report r, then she expects a majority
of the voters to prefer e∗ (r) if the two proposals are different. Similarly, if she sees r′,
she expects the majority to prefer e∗ (r′). Hence, the candidate is induced to propose
the policy voters would choose if they could observe the report.

One might wonder whether such an equilibrium approaches full information equiv-
alence as the report becomes more and more precise. The answer is yes: as Pr (r | θ)
and Pr (r′ | θ′) approach 1, the probability that the correct policy is implemented ap-
proaches 1.

Proposition 8. If π′ > 0 and there are 2 states, 2 policies, and 2 signals, in all
symmetric, pure strategy electoral equilibria with imperfectly informed candidates, a
strategic candidate acts as if she were truthful.

20Bernhardt et al. (2007) show how independent signals induce divergent platforms.
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5.3 Policy-Motivated Candidates

In reality, candidates also care about which policy is implemented. Moreover, candi-
dates’ preferences might be misaligned with voters’ preferences and biased towards one
policy. To allow for policy-motivated candidates, we assume a binary scenario with two
states, θ and θ′, two policies, e and e′, and two signals, s and s′. Policy e is optimal
in state θ; e′ is optimal in θ′. The novelty of this section is that a strategic candidate
wants both to win the election and that policy e′ is implemented. That is, if and only
if she wins the election, she gets a rent R > 0. In addition, whenever policy e′ is
implemented, she also gets an extra payoff β > 0. Hence, β is a measure of the bias of
the candidate.

The following proposition says that if the bias is limited, then all equilibria are fully
revealing as long as π > 0.

Proposition 9. If β ≤ R/2 and π > 0, all electoral equilibria with policy-motivated
candidates are fully revealing.

Existence of fully revealing equilibria is at this point straightforward. Candidates
always propose the optimal policy. Voters coordinate their vote so that when the
candidates make different proposals, the one proposing the optimal policy wins with
probability 1. For each candidate, deviating from equilibrium costs R/2 in any state.
Indeed, the deviating candidate loses any chance of winning the election without af-
fecting the winning policy.

To prove uniqueness, one should take care of only one detail which differs from
the case of office-motivated candidates. Suppose that candidate B proposes e′ with
positive probability in state θ. Then candidate A faces a tradeoff between office and
policy motivations. If she plays e, on one hand she increases her chances of winning,
on the other she makes sure that her least favorite policy is implemented. Let φ < 1

be the total probability that B plays e′ in state θ. In state θ, A’s expected payoff of e′

is φ (β +R/2); her expected payoff of e is (R/2) (1 + φ). It is easy to see that as long
as β ≤ R/2, then A prefers to propose e.

5.4 Different Majority Rules and Heterogeneous Preferences

We extend the model to different majority rules and heterogeneous preferences. We
assume a binary scenario with two states, θ and θ′, two policies, e and e′, and two
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signals, s and s′. Without loss of generality, let (i) e be optimal in θ and e′ be optimal
in θ′, and (ii) Pr (s | θ) > Pr (s | θ′).

Different Majority Rules and Unanimity We allow for different majority rules:
whenever two candidates make different proposals, the one proposing policy e′ wins if
and only if her share of votes is greater than η ∈

[
1
2
, 1
)
.21

Proposition 10. For all π ≥ 0 and all η ∈
[

1
2
, 1
)
, there exists a fully revealing electoral

equilibrium. If π > 0, all electoral equilibria are fully revealing.

Proof. In equilibrium, candidates propose the voters’ optimal policy in each state. As
usual, we need that whenever candidates make different proposals, the one proposing
the optimal policy for the voters wins. The novelty of this section is that in state θ′,
this candidate must receive a share of votes greater than η instead of greater than
1/2. It is useful to divide the analysis in two cases. First, let Pr (s′ | θ′) < η. Voters
who observe signal s are indifferent between the two policies whenever they observe
differing proposals. (Note that this implies that voters who observe signal s′ strictly
prefer policy e′.) They vote for the candidate proposing e with probability a such that

a ∈ ((1− η) /Pr (s | θ) , (1− η) /Pr (s | θ′)) ∩ [0, 1] 6= ∅

and the candidate proposing the optimal policy always wins. Second, let Pr (s′ | θ′) > η.
Voters observing signal s′ are indifferent between the two policies whenever they observe
differing proposals. (Note that this implies that voters who observe signal s strictly
prefer policy e.) They vote for the candidate proposing e′ with probability a′ such that

a′ ∈ (η/Pr (s′ | θ′) , η/Pr (s′ | θ)) 6= ∅

and the candidate proposing the optimal policy always wins. Lemma 1 in Appendix
with 1/2 replaced by η and Part 2 of the proof of Proposition 1 establish that voters’
strategies are best responses to consistent beliefs. The proof of uniqueness then is a
straightforward extension of the proof of Proposition 3.

One might wonder whether fully revealing equilibria exist if unanimity is required
to elect a candidate proposing e′, i.e., η = 1. The answer is negative. Indeed, if a

21Nonetheless, if both candidates propose identical policies, both win with probability 1
2 and the

proposed policy is implemented.
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candidate ever proposes e′, then this means that at least in state θ′, all voters vote for
e′ whenever they observe two different proposals. That is, all voters must vote e′ with
probability 1, no matter what signal they have observed. This means that they also
vote unanimously for e′ in state θ. It follows that candidates would never propose e.22

Heterogeneous Preferences We relax the common values assumption and allow
voters to have heterogeneous preferences. Let T be a set of voters’ types. Each type
t ∈ T has preferences given by the utility function ut : E ×Θ→ R.

For each type t, ∆
(
θ̂ | t

)
≡ ut

(
e, θ̂
)
− ut

(
e′, θ̂

)
is the difference between the

payoffs of policy e and e′ in state θ̂. We maintain the assumption that voters have
monotonic preferences in the sense of Bhattacharya (2008):23 the difference between
the payoffs of policy e and e′ is greater in state θ than in state θ′.

Assumption 2. For any type t, ∆ (θ | t) > ∆ (θ′ | t) .

Let F be a (possibly degenerate) distribution over T . We allow for voters whose
preferred policy is independent of the state. Let F ≥ 0 be the probability that a
voter is of a type t such that ∆

(
θ̂ | t

)
> 0 for all states θ̂. Similarly, F̄ ≥ 0 is the

probability that a voter is of a type t′ such that ∆
(
θ̂ | t′

)
< 0 for all states θ̂. The

following proposition says that whenever the median voter’s preferred policy is different
in different states, then there exists a fully revealing equilibrium.

Proposition 11. For all π ≥ 0 and any distribution of types F such that F < 1/2

and F̄ < 1/2, there exists a fully revealing electoral equilibrium. If π > 0, all electoral
equilibria are fully revealing.

Proof. Let F be such that F < 1/2 and F̄ < 1/2. Whenever the candidates make
different proposals, these share of voters vote respectively for e and e′. The remaining
voters coordinate in such a way that a share of them greater than

η̄ ≡
1
2
− F̄

1−
[
F + F̄

]

22Not surprisingly, the fully revealing equilibrium exists if and only if Pr (s | θ) = Pr (s′ | θ′) = 1.
That is, when voters are perfectly informed.

23Bhattacharya (2008) shows how information aggregation might fail if preferences are not mono-
tonic and voters choose between two given policies.
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votes for e′ if and only if the state is θ′. Thus, if a candidate deviates, she loses. From
Proposition 10, this is always possible. Part 2 of the Proposition then follows from
Proposition 3.

6 Conclusions

An appeal of representative democracy is that informed candidates lead uninformed
voters to take optimal decisions. Yet, there is a counterargument: instead of telling
unpalatable truths to the voters, candidates pander to them and propose whatever the
voters think is best. Of course there might be a young, idealistic politician who always
tells the truth. But she would lose.

In this paper, we have argued that there exist voting strategies which ensures that
candidates always propose the optimal policy. Furthermore, whenever there is a pos-
itive probability of candidates being committed to tell the truth, this is the unique
equilibrium outcome. The optimal strategy for an office-motivated candidate is to pro-
pose the optimal policy for the voters, even though this implies that her chances of
winning the election are not larger than those of a truthful candidate. Although these
results raise some hope, we do not interpret them as proof that pandering and rhetoric
are not important in democratic elections. To the contrary, we believe pandering to be
common. Nonetheless, our results show that the causes of this phenomenon are not as
obvious as we might think, and that simple signaling models hardly help identifying
them.
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A Proofs

We refer to a mixed strategy for candidate c as σc, where σc (e | θ) is the probability
that candidate c proposes policy e in state θ.

We begin by establishing Lemma 1. Suppose that the two candidates make pro-
posals e and e′ 6= e, Θe 6= ∅. Lemma 1 constructs beliefs such that, in any state where
one of the proposals is optimal, the majority of votes goes to the candidate making the
correct proposal. Concretely, for any policy e, define µe : Θ→ [0, 1]:

µe (θ) =


Pr(θ)

Pr(Θe)
if θ ∈ Θe;

0 otherwise.

Lemma 1. Let the candidates propose policies e and e′ 6= e such that Θe 6= ∅. Let
µ∗ = bµe + (1− b)µe′ be the voters’ beliefs derived by updating the prior based on the
proposals but without using the signals. For some b ∈ [0, 1] there exists a sequentially
rational voting strategy such that a (strict) majority of votes goes to the candidate
proposing the optimal policy in any state θ ∈ Θe ∪Θe′.

Proof. Let x be a profile of proposals with two distinct proposals, e and e′. We divide
the proof in two cases.

Case 1: Θe′ = ∅. Then, b = 1, i.e. µ∗ = µe. Since Pr (s | θ) > 0 for all θ ∈ Θ and
all s ∈ S, updating beliefs µ∗ using any signal s delivers Pr (Θe | s, x) = 1. Thus, all
voters vote for the candidate proposing e in any state θ ∈ Θe ∪Θe′ .
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Case 2: Θe′ 6= ∅.

Step 1: We wish to express the expected shares of votes for the candidate proposing
e as a function of b.

Let s be a signal and µ : Θ → [0, 1] ,
∑

Θ µ (θ) = 1, a belief over the set of
states. Define

∆ (s, µ) ≡
∑
θ∈Θ

µ (θ) Pr (s | θ) (u (e, θ)− u (e′, θ)) .

Note that ∆ (s, µ) represents the extra expected payoffs of policy e rather
than e′ when a voter updates beliefs µ using signal s. Then, for any b ∈
[0, 1], we can compute the extra expected payoffs of policy e rather than e′

when the voter updates beliefs µ∗:

E [u (e, θ) | x, s]− E [u (e′, θ) | x, s] =

=

∑
θ∈Θ µ

∗ (θ) Pr (s | θ) (u (e, θ)− u (e′, θ))∑
θ̂∈Θ

µ∗
(
θ̂
)

Pr
(
s | θ̂

)
=
b∆ (s, µe) + (1− b) ∆ (s, µe′)∑

θ̂∈Θ

µ∗
(
θ̂
)

Pr
(
s | θ̂

) (A.1)

where for the last equality we use µ∗ = bµe + (1− b)µe′ and the definition
of ∆ (s, µ). Such a voter is indifferent between the two policies if and only
if

b∗ (s) ≡ 1

1− ∆(s,µe)
∆(s,µe′ )

= b; (A.2)

and he (strictly) prefers e to e′ if and only if b∗ (s) < b. (Notice that
since ∆ (s, µe′) > 0 > ∆ (s, µe), then b∗ (s) ∈ (0, 1) for all s ∈ S.) Thus,
all sequentially rational strategies give a share of votes for the candidate
proposing e equal to

M (a, b | θ) ≡
∑

{s∈S:b∗(s)<b}

Pr (s | θ) + a
∑

{s∈S:b∗(s)=b}

Pr (s | θ)

where a is the probability that an indifferent voter votes for the candidate
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proposing e. Note that the Lemma is proven if there exists (a∗, b∗) ∈ [0, 1]2

such that
min
θ∈Θe

M (a∗, b∗ | θ) > 1

2
> max

θ∈Θe′
M (a∗, b∗ | θ) .

Step 2: We prove a property ofM : [0, 1]2 ×Θ→ [0, 1].

Intermediate Value For any θ ∈ Θe∪Θe′ and any m ∈ [0, 1], there exists
(a, b) ∈ [0, 1]2 such thatM (a, b | θ) = m.

First note that

(i) M (a, b | θ) is continuous in a for all b ∈ (0, 1);

(ii) M (1, b | θ) = M (0, b | θ) and both are continuous in b for all b ∈
[0, 1] : b 6= b∗ (s) for all s ∈ S;

(iii) for all s ∈ S,

lim
b↑b∗(s)

M (1, b | θ) =M (0, b∗ (s) | θ) <M (1, b∗ (s) | θ) = lim
b↓b∗(s)

M (0, b | θ) ;

(iv) M (1, 1 | θ) = 1 andM (0, 0 | θ) = 0.

Because of (ii), (iii),24 and (iv), then {b :M (1, b | θ) ≥ m} = [b′, 1] and
{b :M (0, b | θ) ≤ m} = [0, b′] for some unique b′ ∈ [0, 1].
We now proceed by contradiction. Suppose there exists m ∈ (0, 1) such
that M (a, b | θ) 6= m for all (a, b) ∈ [0, 1]2 . Then M (0, b′ | θ) < m <

M (1, b′ | θ). By continuity ofM (a, b′ | θ) in a, there existsM (a, b′ | θ) =

m, a contradiction.

Step 3: We show that

Pr (s | θ)
Pr (s | θ′)

>
Pr (s′ | θ)
Pr (s′ | θ′)

for all θ ∈ Θe, θ
′ ∈ θe′ ⇐⇒ b∗ (s) < b∗ (s′) .

To see this, recall that

b∗ (s) =
1

1− ∆(s,µe)
∆(s,µe′ )

24Notice that (ii) and (iii) amount as saying thatM (1, b | θ) andM (0, b | θ) are the same function
of b but for a finite set of points at which M (1, b | θ) is upper semi-continuous and M (0, b | θ) is
lower semi-continuous.

23



is decreasing in

−∆ (s, µe)

∆ (s, µe′)
=

∑
θ∈Θe

µe (θ) Pr (s | θ) (u (e, θ)− u (e′, θ))∑
θ′∈Θe′

µe′ (θ′) Pr (s | θ′) (u (e′, θ)− u (e, θ))

=
∑
θ∈Θe

µe (θ) (u (e, θ)− u (e′, θ))∑
θ′∈Θe′

Pr(s|θ′)
Pr(s|θ) µe′ (θ

′) (u (e′, θ)− u (e, θ))

Thus,

Pr (s | θ)
Pr (s | θ′)

>
Pr (s′ | θ)
Pr (s′ | θ′)

for all θ ∈ Θe, θ
′ ∈ θe′

⇐⇒ −∆ (s, µe)

∆ (s, µe′)
> −∆ (s′, µe)

∆ (s′, µe′)

⇐⇒ b∗ (s) < b∗ (s′) .

Step 4: We show that

min
θ∈Θe

M (a, b | θ) ≥ max
θ∈Θe′

M (a, b | θ) for all (a, b) ∈ [0, 1]2 . (A.3)

We prove the cases a = 1 and a = 0 separately. Then Step 4 follows due
to continuity ofM (a, b | θ) in a for all b ∈ [0, 1].

(a = 1) We want to show that∑
{s∈S:b∗(s)≤b}

Pr (s | θ) ≥
∑

{s∈S:b∗(s)≤b}

Pr (s | θ′) . (A.4)

If {s ∈ S : b∗ (s) ≤ b} = ∅, then (A.4) is trivially satisfied. Otherwise,
by contradiction, let∑

{s∈S:b∗(s)≤b}

Pr (s | θ) <
∑

{s∈S:b∗(s)≤b}

Pr (s | θ′) .

Then (rearranging and dividing in each element of the sum by Pr (s | θ′))

∑
{s∈S:b∗(s)≤b}

(
Pr (s | θ)
Pr (s | θ′)

− 1

)
< 0.

Thus, 1 > Pr (s | θ) /Pr (s | θ′) for some s ∈ S : b∗ (s) ≤ b. From
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Step 3, Pr (s | θ) /Pr (s | θ′) is decreasing in b∗ (s) and therefore

1 >
Pr (s | θ)
Pr (s | θ′)

for all s ∈ S : b∗ (s) > b

which implies that if {s ∈ S : b∗ (s) > b} is not empty

∑
{s∈S:b∗(s)>b}

(
Pr (s | θ)
Pr (s | θ′)

− 1

)
< 0

⇐⇒
∑

{s∈S:b∗(s)>b}

Pr (s | θ) <
∑

{s∈S:b∗(s)>b}

Pr (s | θ′)

⇐⇒
∑

{s∈S:b∗(s)≤b}

Pr (s | θ) >
∑

{s∈S:b∗(s)≤b}

Pr (s | θ′)

a contradiction. Otherwise, if {s ∈ S : b∗ (s) > b} is empty, then∑
{s∈S:b∗(s)≤b}

Pr (s | θ) =
∑

{s∈S:b∗(s)≤b}

Pr (s | θ′) = 1

a contradiction.

(a = 0) The proof for this case follows very closely the case for a = 1 after
substituting {s ∈ S : b∗ (s) ≤ b} with {s ∈ S : b∗ (s) < b} and {s ∈ S : b∗ (s) > b}
with {s ∈ S : b∗ (s) ≥ b}.

Step 5: Note that Assumption 1 has a strict inequality. Thus, (A.3) holds with
equality only if (i) b is large enough such thatM (a, b | θ) = 1 for all θ ∈
Θe∪Θe′ and all a ∈ [0, 1], or (ii) b is small enough such thatM (a, b | θ) = 0

for all θ ∈ Θe ∪ Θe′ and all a ∈ [0, 1]. By the Intermediate Value property
of M, these two sets do not cover the entire interval [0, 1]. That is, the
inequality holds with strict sign for b in a non-empty subset of [0, 1] . We
conclude that for any m′ ∈ (0, 1), there exist (a∗, b∗) ∈ [0, 1]2 such that

min
θ∈Θe

M (a∗, b∗ | θ) > m′ > max
θ∈Θe′

M (a∗, b∗ | θ) .

Let m′ = 1/2 to conclude the proof.

25



A.1 Proof of Proposition 1

We first prove the result for π = 0 in two parts. Part 1 establishes a sufficient condition
for the candidates to always propose the optimal policy for the voters. This condition
says that, in any state θ, if a candidate proposes e∗ (θ) and the other proposes e 6= e∗ (θ),
then a majority of the voters vote for the first candidate. By Lemma 1, this condition
is satisfied if, for any pair of proposals xc = e and x−c = e′ 6= e, Θe 6= ∅, voters have
beliefs µ∗ = bµe + (1− b)µe, for some b ∈ [0, 1] (potentially) different for each pair of
proposals. Part 2 shows that such beliefs are consistent with candidates’ equilibrium
strategies.

To conclude the proof, it is sufficient to recognize that if π > 0 (i) the beliefs of
the voters along the equilibrium path are unchanged since in equilibrium a truthful
candidate proposes the same policy of a strategic candidate; (ii) off-equilibrium beliefs
are determined exclusively by the relative probability of a tremble from the equilibrium
path in different states, something that cannot be modified in expectations by a truthful
candidate.

Part 1 We establish a sufficient condition for the candidates to always propose the
optimal policy for the voters: in any state θ, whenever a candidate proposes e∗ (θ)

and the other proposes e 6= e∗ (θ), a (strict) majority of the voters is expected to
vote for the candidate proposing e∗ (θ). To see that this condition is sufficient, let
R (σc, σ−c | θ) be the expected rent for candidate c when she plays σc, her opponent
plays σ−c, and the state is θ. First, assume that σ−c (e∗ (θ) | θ) < 1. If σc (e∗ (θ) | θ) =

1, then R (σc, σ−c | θ) > R/2. To see this, note that with probability σ−c (e∗ (θ) | θ),
both candidates propose e∗ (θ) and collect a rent equal to R/2. With probability
1−σ−c (e∗ (θ) | θ) > 0, only c plays e∗ (θ). Since the majority of the voters is expected
to vote for c (the only candidate proposing e∗ (θ)) the expected rent of c is greater than
R/2. To complete this part of the proof, it is sufficient to note that the two candidates
are playing a symmetric constant-sum game where the payoffs are bounded above by
R.

Part 2 We now show that beliefs µ∗ are consistent with the equilibrium strategies
of the candidates. The equilibrium strategy of each candidate c is σ∗ such that, for
any θ ∈ Θ, σ∗ (e∗ (θ) | θ) = 1 and σ∗ (e | θ) = 0 for all e 6= e∗ (θ). Let e and e′ be two
policies such that Θe 6= ∅. We want to show that, for any b ∈ [0, 1], there exists a
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sequence of completely mixed strategies {σn}∞n=1 converging to σ∗ such that, if voters
observe one candidate proposing e and another proposing e′,

µ (θ) = lim
n→∞

σn (e | θ)σn (e′ | θ) Pr (θ)∑
θ̂∈Θ

σn

(
e | θ̂

)
σn

(
e′ | θ̂

)
Pr (θ)

= µ∗ (θ)

=

bµe (θ) + (1− b)µe′ (θ) if Θe′ 6= ∅;

µe (θ) otherwise.

Let σn (e | θ) = κe∗(θ),eε
n for all e 6= e∗ (θ), with κe∗(θ),e ∈ (0, 1) and∑

e6=e∗(θ)

κe∗(θ),e = 1.

Note that this implies σn (e∗ (θ) | θ) = 1− εn
∑

e6=e∗(θ) κe∗(θ),e which converges to 1. In
Section 1, Online Appendix we derive

µ (θ) =
Pr (θ)

Pr (Θe) +
κe′,e
κe,e′

Pr (Θe′)
for all θ ∈ Θe

µ (θ′) =
Pr (θ′)

Pr (Θe′) +
κe,e′

κe′,e
Pr (Θe)

for all θ′ ∈ Θe′

µ (θ′′) = 0 for all θ′′ /∈ Θe ∪Θe′ . (A.5)

That is,

b =
Pr (Θe)

Pr (Θe) +
κe,e′

κe′,e
Pr (Θe′)

∈ [0, 1]⇒ µ (θ) = µ∗ (θ) .

Last, note that we can simultaneously derive any different b ∈ [0, 1] for any distinct
pair of policies e and e′, Θe,Θe′ 6= ∅, by choosing appropriate weights κe,e′ and κe′,e.�

A.2 Proof of Proposition 2

Assume voters follow the strategy in Part 2 of the proof of Proposition 1. From Part 1,
(i) this induces a constant-sum simultaneous move game between the candidates; (ii)
this game has unique equilibrium (always propose the optimal policy for the voters);
(iii) the equilibrium is strict. �
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A.3 Proof of Proposition 3

There are two policies, e and e′, each optimal in state θ and θ′ respectively. Let
σ̄c (θ) ≡ (1− π)σc (e′ | θ) and σ̄c (θ′) ≡ (1− π)σc (e | θ′) be the total probability that
candidate c does not play the optimal policy for the voters in state, respectively, θ and
θ
′ . Without loss of generality, we want to prove the following: there is no equilibrium
with σ̄A (θ) > 0.

We proceed as follows. In Step 1 we show necessary conditions for σ̄A (θ) > 0 to be a
rational strategy. In Step 2 we show that in any equilibrium σ̄A (θ) > 0⇒ σ̄A (θ′) = 0,
that is, each candidate c plays the optimal policy for the voters with probability 1 in
at least one state. Step 3 concludes our argument

Step 1 With some abuse of notation, call A
(
xA, xB | θ̂

)
the probability that candi-

date A wins if proposals are xA and xB and the state is θ̂ ∈ {θ, θ′}. Notice
that for any belief of the voters and any profile of proposals

(
xA, xB

)
∈

{e, e′}2 either (i) the majority of the voters vote for A and thus she wins
with probability 1, (ii) the majority of the voters vote for B and thus A wins
with probability 0, or (iii) exactly one half of the voters vote for A and thus
she wins with probability 1/2. Hence, A : {e, e′}2 × {θ, θ′} → {0, 1/2, 1}.
By Assumption 1 (see the Proof of Lemma 1 for details),

A (e′, e | θ) ≤ A (e′, e | θ′)

A (e, e′ | θ) ≥ A (e, e′ | θ′) (A.6)

and the inequalities hold with strict sign if one of the sides equals 1/2.
Candidate A finds optimal to play e′ with positive probability in state θ
only if

σ̄B (θ)

2
+
(
1− σ̄B (θ)

)
A (e′, e | θ) ≥ σ̄B (θ)A (e, e′ | θ) +

(
1− σ̄B (θ)

)
2

.

(A.7)
Similarly, A finds optimal to play e with positive probability in state θ′

only if

σ̄B (θ′)

2
+
(
1− σ̄B (θ′)

)
A (e, e′ | θ′) ≥ σ̄B (θ′)A (e′, e | θ′) +

(
1− σ̄B (θ′)

)
2

.

(A.8)
Notice that since σ̄B (θ) ≤ 1 − π < 1, a necessary condition for (A.7) is
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(i) A (e′, e | θ) ≥ A (e, e′ | θ) or (ii) σ̄B (θ) = 0 and A (e′, e | θ) = 1/2 <

A (e, e′ | θ). Similarly, since and σ̄B (θ′) ≤ 1 − π < 1, a necessary condi-
tion for (A.8) is (i.a) A (e, e′ | θ′) ≥ A (e′, e | θ′) or (ii.a) σ̄B (θ) = 0 and
A (e, e′ | θ′) = 1/2 < A (e′, e | θ′).

Step 2 We want to show that if σ̄A (θ) > 0, then in equilibrium σ̄A (θ′) = 0.
Using the results in step 1, we divide the analysis in three cases. First,
let A (e′, e | θ) > A (e, e′ | θ) or A (e′, e, θ) = A (e, e′ | θ) = 1/2. By (A.6),
A (e′, e | θ′) > A (e, e′ | θ′). From (i.a) and (ii.a) above, either σ̄A (θ′) = 0 or
σ̄B (θ′) = 0 and A (e, e′ | θ′) = 1/2. In this last case, by (A.6), A (e, e′ | θ) =

1, contradicting the hypothesis that A (e′, e | θ) > A (e, e′ | θ).
Second, let σ̄B (θ) = 0 and A (e′, e | θ) = 1/2 < A (e, e′ | θ). Since candi-
date B never plays e′ in state θ, whenever A plays e and B plays e′, either
σ̄A (θ′) = 0 or the voters must believe that state θ′ has occurred with prob-
ability 1: A (e, e′ | θ) = 0, a contradiction.
Third, let A (e′, e | θ) = A (e, e′ | θ) 6= 1/2. In state θ one of the candi-
dates always loses whenever the proposals are different. Then candidates
play σ̄A (θ) = σ̄B (θ) = 1/2.25 In state θ′ we have one of two cases:26 (i)
A (e′, e | θ′) > A (e, e′ | θ′), in which case either σ̄A (θ′) = 0 or we reach a
contradiction (see previous paragraph); (ii) A (e′, e | θ′) = A (e, e′ | θ′) 6=
1/2, implying σ̄A (θ′) = σ̄B (θ′) = 1/2. But then voters’ equilibrium beliefs
must be identical to their prior (when the platforms are different), contra-
dicting the hypothesis that a candidate loses whenever the proposals are
different.

Step 3 We divide this step in two cases. First, assume σ̄A (θ′) = σ̄B (θ′) = 0

and σ̄A (θ) > 0. Then, whenever candidate A proposes e′ and candi-
date B proposes e, voters believe state θ has occurred with probability
1: A (e′, e | θ) = 0. Thus, from (A.7), candidate A prefers to play policy e′

in state θ only if A (e, e′ | θ) = 0 and σ̄B (θ) ≥ 1/2. But if σ̄B (θ) > 0, when-

25Indeed in state θ the candidates play Matching Pennies with net payoffs equal to 1/2.
26Note that because of A.6 (the inequalities hold with strict sign if one of the sides equals 1/2)

A (e′, e | θ) = A (e, e′ | θ)

⇒ A (e′, e | θ′) > A (e, e′ | θ′) or A (e′, e | θ′) = A (e, e′ | θ′) 6= 1

2
.
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ever candidate B proposes e′ and candidate A proposes e, voters believe
state θ has occurred with probability 1: A (e, e′ | θ) = 1, a contradiction.
Next, assume σ̄A (θ′) = σ̄B (θ) = 0 and σ̄A (θ) > 0. If σ̄B (θ′) = 0, when-
ever candidate A proposes e′ and candidate B proposes e, voters believe
state θ has occurred with probability 1: A (e′, e | θ) = 0. Thus, from (A.7),
candidate A prefers to play policy e′ in state θ only if A (e, e′ | θ) = 0 and
σ̄B (θ) ≥ 1/2, a contradiction. Suppose instead that candidate B finds
optimal to propose e in state θ′ so that σ̄B (θ′) > 0. Then we must have

σ̄A (θ′)

2
+
(
1− σ̄A (θ′)

)
(1− A (e′, e | θ′)) ≥

≥ σ̄A (θ′) (1− A (e, e′ | θ′)) +

(
1− σ̄A (θ′)

)
2

and thus A (e′, e | θ′) ≤ 1/2. But since A plays e′ with positive probability
in state θ, by (A.7) we also have A (e′, e | θ) ≥ 1/2. Recalling that (A.6)
has strict sign when any side equals 1/2, we have a contradiction. �

A.4 Proof of Proposition 4

Let σ∗ be a pure strategy such that there exists θ ∈ Θ for which σ∗ (e | θ) = 1,
e 6= e∗ (θ). We want to show that if π > 0, there is no equilibrium where every
candidate plays σ∗.

First, suppose the voters observe x = (e, e∗ (θ)).27 They must believe one of two
things: (i) e is optimal, but strategic candidates propose e∗ (θ) in this state or (ii) e∗ (θ)

is optimal, but strategic candidates propose e in this state. This is because these two
cases require only the presence of a truthful candidate. Any other combination giving
proposals x requires at least one candidate to tremble. To see this, let {σn}∞n=1 be any
sequence of completely mixed strategies converging to σ∗. Then, when voters observe

27Or x = (e∗ (θ) , e). Since we are looking for symmetric equilibria, this is without loss of generality.
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x = (e, e∗ (θ)), they have beliefs µ such that, for any θ̂ ∈ Θ,

µ
(
θ̂
)

=

lim
n→∞

[
(1− π) πσn

(
e | θ̂

)
1

(
θ̂ ∈ Θe∗(θ)

)
+ π (1− π)1

(
θ̂ ∈ Θe

)
σn

(
e∗ (θ) | θ̂

)]
Pr
(
θ̂
)

∑
θ̃∈Θ

[
π (1− π)σn

(
e | θ̃

)
1

(
θ̃ ∈ Θe∗(θ)

)
+ π (1− π)σn

(
e∗ (θ) | θ̃

)
1

(
θ̃ ∈ Θe

)]
Pr
(
θ̃
) ,

where 1 is an indicator function. Recall that σ∗ is a pure strategy; hence, if limn→∞ σn(e |
θ̂) 6= 0, then limn→∞ σn(e∗ (θ) | θ̂) = 0 (and vice versa). It follows that µ(θ̂) > 0 if and
only if θ̂ ∈ Θ̄e ∪ Θ̄e∗(θ), where

Θ̄e ≡ {θ′ ∈ Θe : σ∗ (e∗ (θ) | θ′) = 1}

Θ̄e∗(θ) ≡
{
θ′ ∈ Θe∗(θ) : σ∗ (e | θ′) = 1

}
.

If there is no state of type (i), then the proof is concluded, since the voters must
conclude that e∗ (θ) is optimal and vote for the candidate proposing e∗ (θ), making
σ (e∗ (θ) | θ) = 1 the unique best response to any strategy played by the other candi-
date. Otherwise, we need to calculate µ(θ̂) for all the states θ̂ where it is positive. This
is

µ
(
θ̂
)

=
Pr
(
θ̂
)

Pr
(
Θ̄e

)
+ Pr

(
Θ̄e∗(θ)

) .
From part 2 of Proof of Proposition 1 and Lemma 1, we know that in this case the
expected share of votes for the candidate proposing e∗ (θ) is greater in state θ than in
any state in Θe. (Compare with (A.5) and note Θ̄e ⊆ Θe, Θ̄e∗(θ) ⊆ Θe∗(θ)). Then if
e∗ (θ) loses against e in state θ, it must also lose in any state Θe. Hence, Θ̄e is empty
(if not, then a candidate could deviate to e and win for sure). It follows that µ(θ̂) > 0

if and only if θ̂ ∈ Θ̄e∗(θ). But then all voters vote for the candidate proposing e∗ (θ),
contradicting σ∗ (e | θ) = 1. �

A.5 Proof of Proposition 5

From the proof of Proposition 1, we know that if voters are restricted to sincere voting
strategies, then there exists a fully revealing equilibrium in which voters’ beliefs derived
by updating the prior after observing the proposals but without using the signals are
µ∗ = bµe + (1− b)µe′ whenever the candidates propose two distinct policies e and e′
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with Θe,Θe′ 6= ∅. (The case of only one policy being optimal is extended easily to
strategic voters since beliefs are such that only that policy can be optimal).

Furthermore, from Lemma 1, for some (a, b) ∈ [0, 1]2 , we have

min
θ∈Θe

M (a, b | θ) > 1

2
> max

θ′∈Θe′
M (a, b | θ′) (A.9)

where M (a, b | θ) is the expected share of votes for e in state θ. By the Magnitude
Theorem (Theorem 1, Myerson (2000)) strategic voters will concentrate their beliefs
on those states in Θe ∪Θe′ that minimize |M (a, b | θ)− 1/2|.28

Voters vote sincerely only if their beliefs are concentrated on both a state θ in Θe

and a state θ′ in Θe′ . Otherwise, either e or e′ would be preferred by all voters once
they consider pivot probabilities. That is, we need

min
θ∈Θe

M (a, b | θ)− 1

2
=

1

2
− max

θ′∈Θe′
M (a, b | θ′) . (A.10)

Choose b ∈ [0, 1] such that (A.9) holds and there exists a signal s∗ such that
b∗ (s∗) = b.29 That is, there is a signal such that, if a voter observes this signal and
updates beliefs µ∗, then he is indifferent between e and e′. By Assumption 1, there can
be at most one such signal for any b ∈ [0, 1]. In this case the measure of voters with
signal s∗ must be decisive in the election.30

Recall that31

M (a, b | θ) ≡
∑

s:b∗(s)<b

Pr (s | θ) + a
∑

s:b∗(s)=b

Pr (s | θ)

=
∑

s:b∗(s)<b

Pr (s | θ) + aPr (s∗ | θ) .

28The Magnitude Theorem states that beliefs must be concentrated on those states in which the
magnitude of the event that a vote is pivotal between e and e′, mag (pive,e′ | θ), is largest. From the
formula in Section 5 of Myerson (2000), p. 25,

mag (pive,e′ | θ) = −
(√
M (a, b | θ)−

√
1−M (a, b | θ)

)2
which is monotonically decreasing in |M (a, b | θ)− 1/2|.

29The existence of such b is a direct consequence of the existence of (a, b) for which (A.9) holds.
That is, we can always have the voters with one signal s∗ be indifferent and choose any strategy a
such that a sufficiently large share of them vote for e.

30Otherwise, suppose that e wins in all states θ ∈ Θe even if no voter with signal s∗ votes for them,
then there is another signal s, more “in favor of e” that can be indifferent and still (A.9) holds.

31The derivation of the formula is in the proof of Lemma 1.

32



Hence, for θ̂ ≡ arg minθ∈ΘeM (a, b | θ) and θ̂′ ≡ arg maxθ′∈Θe′
M (a, b | θ′), (A.10) is

satisfied by

a =
1−

[∑
s:b∗(s)<b Pr

(
s | θ̂

)
+
∑

s:b∗(s)<b Pr
(
s | θ̂′

)]
Pr
(
s∗ | θ̂

)
+ Pr

(
s∗ | θ̂′

)
and (A.9) holds by construction. Notice that a is a probability and therefore lies in the
interval [0, 1] (see footnote 29). That is, strategic voters play a specific sincere voting
strategy and hold specific beliefs µ∗ (θ) = bµe+(1− b)µe′ . To conclude the proof, note
that a and b are determined independently for each pair of policies e and e′. �

A.6 Proof of Proposition 7

We can relabel the elements such that Pr (s | θ) > Pr (s | θ′) and Pr (r | θ) > Pr (r | θ′).
It follows that

1. from Bayes’ rule, Pr (θ | r) > Pr (θ | r′), Pr (θ′ | r) < Pr (θ′ | r′);

2. Pr (s | r) > Pr (s | r′) because

Pr (s | r)− Pr (s | r′) = Pr (s | θ) Pr (θ | r) + Pr (s | θ′) [1− Pr (θ | r)]

−Pr (s | θ) Pr (θ | r′)− Pr (s | θ′) [1− Pr (θ | r′)]

= [Pr (θ | r)− Pr (θ | r′)] [Pr (s | θ)− Pr (s | θ′)] > 0;

3. since there are only two signals, voters who observe signal s are always more in
favor of policy e than voters who observe signal s′ and the share of voters who
prefer e to e′ is always at least as large in state θ than in state θ′;

4. either Pr (s | r) > 1/2 or Pr (s′ | r′) > 1/2 .

We first establish a few preliminary results. Suppose that voters could also observe the
report r. Then if they had to choose between e and e′, they would choose as follows:
a voter with signal s would chooses e if the expected payoff of e is greater than the
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expected payoff of e′. That is, if32

Pr (s | θ)
Pr (s | θ′)

>
(u (e′, θ′)− u (e, θ′)) Pr (θ′)

(u (e, θ)− u (e,′ θ)) Pr (θ)

Pr (r | θ′)
Pr (r | θ)

.

Again, the share of voters who prefer e to e′ is at least as large in state θ as in state
θ′. Since Pr (θ | r) > Pr (θ | r′), then the conditional expected share of voters who
prefer e to e′ is always as large if the report is r than if it is r′. This means that if
e∗ (r) 6= e∗ (r′), then e∗ (r) = e and e∗ (r′) = e′.

We divide the rest of the proof in two cases.

Case 1 First, when e∗ (r) = e∗ (r′) = ê. This means that for any r, the majority of
the voters prefer policy ê to any other policy. Choose any belief about the report
that voters might have after observing the candidates making different proposals.
Then the majority of the voters will vote for the candidate proposing ê. It follows
that candidates are induced to propose policy ê for any report.

Case 2 Second, let e∗ (r) 6= e∗ (r′). From the properties above, it must be e∗ (r) = e

and e∗ (r′) = e′. Also, Pr (s | r) > 1/2 (of course, the choice of s to be the signal
for which the inequality in point 4 above holds is without loss of generality). In
equilibrium, candidates’ expected payoff is R/2. Voters vote for each candidate
with probability 1/2 if the two proposals coincide and play the following strategy
otherwise. If a voter observes s, he votes for the candidate proposing e∗ (r) with
probability a. If he observes s′, he always votes for the candidate proposing
e∗ (r′). Let a be such that

a ∈
(

1

2 Pr (s | r)
,

1

2 Pr (s | r′)

)
6= ∅,

where the last passage follows from point 2 above. This is coherent with voters
observing signal s being indifferent between e and e′ when the candidates make
two different proposals.

To see why this is an equilibrium, note that, conditional on the report, the

32This comes directly from∑
θ̂∈{θ,θ′}

(
u
(
e, θ̂
)
− u

(
e′, θ̂

))
Pr
(
s | θ̂

)
Pr
(
r | θ̂

)
Pr
(
θ̂
)

Pr (s | θ) Pr (r | θ) Pr (θ) + Pr (s | θ′) Pr (r | θ′) Pr (θ′)
> 0.
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expected share of votes for the candidate proposing the correct policy is greater
than 1/2 (when the opponent makes a different proposal), since aPr (s | r) > 1/2

and aPr (s | r′) < 1/2.

It remains to be shown that voters who observe signal s are indifferent between
the two policies if the candidates make two different proposals. Let us redefine
the candidates strategies as a function of the report r. Let {σn}∞n=1 be a sequence
of completely mixed strategies for the candidates, where σn (e∗ (r′) | r) = εn and
σn (e∗ (r) | r′) = κεn, ε small. We need to show that there exists κ > 0 such that
a voter observing signal s is indifferent between the two proposals when they
differ from each other. That is,

lim
n→∞

∑
θ̂∈Θ

(
u
(
e, θ̂
)
− u

(
e′, θ̂

))
×

×

[
(1− εn) εn Pr

(
r | θ̂

)
+ (1− κεn)κεn Pr

(
r′ | θ̂

)]
Pr
(
s | θ̂

)
Pr
(
θ̂
)

∑
θ̃∈Θ

[
(1− εn) εn Pr

(
r | θ̃

)
+ (1− κεn)κεn Pr

(
r′ | θ̃

)]
Pr
(
s | θ̃

)
Pr
(
θ̃
) = 0.

Dividing both numerator and denominator by (1− εn) εn, taking the limit as
n→∞, and rearranging:

Pr (s | θ)
Pr (s | θ′)

=
(u (e′, θ′)− u (e, θ′)) (Pr (r | θ′) + κPr (r′ | θ′)) Pr (θ′)

(u (e, θ)− u (e′, θ)) (Pr (r | θ) + κPr (r′ | θ)) Pr (θ)

which is a first order polynomial in κ with a positive root. �

A.7 Proof of Proposition 8

Proceed by contradiction. Assume that in equilibrium xA (r) = xB (r) and xA (r′) =

xB (r′) 6= e∗ (r′). (Again, the choice of order of policies and reports is with no loss
of generality). If voters observe two different proposals, then the candidate proposing
e∗ (r′) must be truthful. To see why, notice that

Thus xA (r) 6= xB (r) occurs with positive probability (i) whenever the candidates
observe r′ and (ii) when the candidates observe r if and only if e∗ (r) 6= e∗ (r′) and
xA (r) = xB (r) = e∗ (r′). Thus, if e∗ (r) = e∗ (r′), voters who observe two different
proposals conclude that the candidate proposing e∗ (r′) must be truthful. By definition
of e∗ (r′), when they have observe report r′, candidates expect the majority of the
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voters to vote for the candidate proposing e′. It follows that a candidate prefers to
deviate and play xc (r′) = e∗ (r′).

Suppose that e∗ (r) 6= e∗ (r′) and xA (r) = xB (r) = e∗ (r′). It is easy to see that
if candidates play e∗ (r′) when they observe r, it must be that deviating to e∗ (r) is
not increasing their chances of winning the election. By definition, if a candidate
proposing e∗ (r) does not expect to win against a candidate proposing e∗ (r′) when
r′ occurs, then a candidate proposing e∗ (r) must expect to lose against a candidate
proposing e∗ (r′) when r′ occurs. We can then rule out that xA (r′) = xB (r′) 6= e∗ (r′)

occurs in equilibrium. �

A.8 Proof of Proposition 9

The proof is identical to the proof of Proposition 3 after noticing that there is no
point in proposing your favorite policy if there is no chance of winning and therefore
implement it. The only difficult case has already been discussed in the text after the
Proposition 9. �
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