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Abstract

Sender, who is either good or bad, wishes to look good at an exogenous deadline.

Sender privately observes if and when she can release a public flow of information

about her private type. Releasing information earlier exposes to greater scrutiny, but

signals credibility. In equilibrium bad Sender releases information later than good

Sender. We find empirical support for the dynamic predictions of our model using

data on the timing of US presidential scandals and US initial public offerings. In the

context of elections, our results suggest that “October Surprises” are driven by the

strategic behavior of bad Sender.
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1 Introduction

Election campaigns consist of promises, allegations, and scandals. While most of them
are inconsequential, some are pivotal events that can sway elections. Rather than settling
existing issues, these bombshells typically start new debates that, in time, provide voters
with new information. When bombshells are dropped, their timing is hotly debated.
Was the bombshell intentionally timed to sway the election? What else did media and
politicians know, when they dropped the bombshell, that voters might only discover after
the election?

The 2016 US presidential campaign between Democrat Hillary Clinton and Republi-
can Donald Trump provides several examples. Just eleven days before the election, FBI
director James Comey announced that his agency was reopening its investigation into
Secretary Clinton’s emails. The announcement reignited claims that Clinton was not fit to
be commander in chief because of her mishandling of classified information. Paul Ryan,
the Republican Speaker of the House, went as far as to demand an end to classified intel-
ligence briefings to Clinton. Some commentators maintain that Comey’s announcement
cost Clinton the election.1

While the announcement conveyed the impression of an emerging scandal, Clinton
was confident that no actual wrongdoing would be revealed by the new investigation
—there would be no real scandal. Comey’s letter to Congress stated that “the FBI cannot
yet assess whether or not this material may be significant, and I cannot predict how long
it will take us to complete this additional work.” The Clinton campaign—and Democrats
generally—were furious, accusing Comey of interfering with the election. Comey wrote
that he was briefed on the new material only the day before the announcement. But his
critics maintained that the FBI had accessed the new emails weeks before the announce-
ment and speculated about how long Comey sat on the new material and what he knew
about it.2

Similarly, one month before the election, the Washington Post released a video featur-
ing Donald Trump talking disparagingly about women.3 The video triggered a heated
public debate about whether Trump was fit to be president. It revived allegations that
he had assaulted women and even prominent Republicans called for Trump to end his

1For example, Paul Krugman wrote that the announcement “very probably installed Donald Trump in
the White House” (New York Times, Jan. 13, 2017).

2Matt Zapotosky, Ellen Nakashima, and Rosalind S. Helderman, Washington Post, Oct. 30, 2016.
3Although the video was filmed 11 years prior to the release, raising the question of whether it was

strategically timed, the Washington Post maintains it obtained the unedited video only a few hours before
its online release (Farhi, Paul, Washington Post, Oct. 7, 2016).

1



Figure 1: Distribution of scandals implicating US presidents running up for reelection,
from 1977 to 2008. Data from Nyhan (2015).
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campaign.4 Within a week of the video’s release, five women came forward accusing
Trump of sexual assault. Trump himself denied all accusations and dismissed the video
as “locker-room banter,” and “nothing more than a distraction from the important issues
we are facing today.”5 Others echoed his statement that real scandals are about “actions”
and not “words,” and took the media coverage of the video as proof of a conspiracy
against Trump.6

The concentration of scandals in the last months of the 2016 campaign is far from
an exception. Such October surprises are commonplace in US presidential elections, as
shown in Figure 1. Political commentators argue that such bombshells may be strategi-
cally dropped close to elections so that voters have not enough time to tell real from fake
news. Yet, if all fake news were released just before an election, then voters may rationally
discount October surprises as fake. Voters may not do so fully, however, since while some
bombshells may be strategically timed, others are simply discovered close to the election.

Therefore, the strategic decision of when to drop a bombshell is driven by a tradeoff
between credibility and scrutiny. On the one hand, dropping the bombshell earlier is
more credible, in that it signals that its sender has nothing to hide. On the other hand, it
exposes the bombshell to scrutiny for a longer period of time—possibly revealing that the

4Aaron Blake, Washington Post, Oct. 9, 2016.
5Los Angeles Times, transcript of Trump’s video statement, Oct. 7, 2016.
6Susan Page and Karina Shedrofsky, USA TODAY, Oct. 26, 2016
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bombshell is a fake.
This credibility-scrutiny tradeoff also drives the timing of announcements about can-

didacy, running mates, cabinet members, and details of policy platforms. An early an-
nouncement exposes the background of the candidate or her team to more scrutiny, but
boosts credibility. The same tradeoff is likely to drive the timing of information release
in other contexts outside the political sphere. For instance, a firm going public can pro-
vide a longer or shorter time for the market to evaluate its prospectus before the firm’s
shares are traded. This time can be dictated by the firm’s liquidity needs and develop-
ment plans, but can also be chosen strategically to influence the market. A longer time
allows the market to learn more about the firm’s prospective performance. Therefore, the
market perceives a longer time as a signal of the firm’s credibility, increasing the share
price. But a longer time also exposes the firm to more scrutiny, possibly revealing that the
firm’s future profitability is low.

In all these situations, (i) an interested party has private information and (ii) she cares
about the public opinion at a given date. Crucially, (iii) she can partially control how
much time the public has to learn about her information. In this paper we introduce a
Sender-Receiver model of these dynamic information release problems. In our bench-
mark model of Section 2, (i) Sender privately knows her binary type, good or bad, and (ii)
wants Receiver to believe that she is good at an exogenous deadline; (iii) Sender privately
observes whether and when an opportunity to start a public flow of information about
her type arrives and chooses when to exercise this opportunity. We call this opportunity
an arm and say that Sender chooses when to pull the arm.7

In Section 3.1, we characterize the set of perfect Bayesian equilibria. Intuitively, bad
Sender is willing to endure more scrutiny only if pulling the arm earlier boosts her cred-
ibility in the sense that Receiver holds a higher belief that Sender is good if the arm is
pulled earlier. Therefore, bad Sender withholds the arm with strictly positive probability.
Our main result is that, in all equilibria, bad Sender pulls the arm later than good Sender
in the likelihood ratio order.

We prove that there exists an essentially unique divine equilibrium (Cho and Kreps,
1987).8 In this equilibrium, good Sender immediately pulls the arm when it arrives and
bad Sender is indifferent between pulling the arm at any time and not pulling it at all.
Uniqueness allows us to analyze comparative statics in a tractable way in a special case

7In Section 3.2, we generalize the model in several directions allowing for more general utility functions,
for Sender to be imperfectly informed, for Sender’s type to affect when the arm arrives, and for the deadline
to be stochastic.

8The equilibrium is essentially unique in the sense that the probability with which each type of Sender
pulls the arm at any time is uniquely determined.
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of our model where the arm arrives according to a Poisson process and pulling the arm
starts an exponential learning process in the sense of Keller, Rady and Cripps (2005).

We do this in Section 4 and show that the comparative static properties of this equi-
librium are very intuitive. Both good and bad Sender gain from a higher Receiver’s prior
belief that Sender is good. Instead, whereas good Sender gains from a faster learning
process and a faster arrival of the arm, bad Sender loses from these.

When learning is faster and when the arm arrives more slowly, bad Sender delays
pulling the arm for longer and pulls it with lower probability. In this case, the total prob-
ability that (good and bad) Sender pulls the arm is also lower. When Receiver’s prior be-
lief is higher, withholding information is less damning, so bad Sender strategically pulls
the arm with lower probability, but the probability that good Sender pulls the arm is me-
chanically higher. We show that the strategic effect dominates the mechanical effect if and
only if Receiver’s prior belief is sufficiently low.

We show that the probability density with which bad Sender pulls the arm is single-
peaked in time, and derive the conditions under which it monotonically increases with
time. We also characterize the shape of the probability density with which (good and bad)
Sender pulls the arm, and show it has at most two peaks—an earlier peak driven by good
Sender and a later peak driven by bad Sender.

In Section 5, we apply our model to the strategic release of political scandals in US
presidential campaigns. In equilibrium, while real scandals are released as they are dis-
covered, fake scandals are strategically delayed and concentrated towards the end of the
campaign. In other words, our credibility-scrutiny tradeoff predicts that the October sur-
prise phenomenon is driven by fake scandals. Using data from Nyhan (2015), we find em-
pirical support for this prediction. To the best of our knowledge, this is the first empirical
evidence about the strategic timing of political scandals relative to the date of elections
and the first direct evidence of an October Surprise effect.

Finally, we apply our model to the timing of US initial public offerings (IPOs). Our
model links a stock’s long-run performance to the time gap between the announcement
of an IPO and the initial trade date. Firms with higher long-run returns should choose
longer time gaps in the likelihood ratio order. Using an approach developed by Dard-
anoni and Forcina (1998), we find empirical support for this prediction.

1.1 Related Literature

Grossman and Hart (1980), Grossman (1981), and Milgrom (1981) pioneered the study of
verifiable information disclosure and established the unraveling result: if Sender’s prefer-
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ences are common knowledge and monotonic in Receiver’s action (for all types of Sender)
then Receiver learns Sender’s type in any sequential equilibrium. Dye (1985) first pointed
out that the unraveling result fails if Receiver is uncertain about Sender’s information en-
dowment.9 When Sender does not disclose information, Receiver is unsure as to why, and
thus cannot conclude that the non-disclosure was strategic, and hence does not “assume
the worst” about Sender’s type.

Acharya, DeMarzo and Kremer (2011) and Guttman, Kremer and Skrzypacz (2013) ex-
plore the strategic timing of information disclosure in a dynamic version of Dye (1985).10

Acharya et al. (2011) focus on the interaction between the timing of disclosure of private
information relative to the arrival of external news, and clustering of the timing of an-
nouncements across firms. Guttman et al. (2013) analyze a setting with two periods and
two signals and show that, in equilibrium, both what is disclosed and when it is disclosed
matters. Strikingly, the authors show that later disclosures are received more positively.

All these models are unsuited to study either the credibility or the scrutiny sides of our
tradeoff, because information in these models is verified instantly and with certainty once
disclosed. In our motivating examples, information is not immediately verifiable: when
Sender releases the information, Receiver only knows that “time will tell” whether the
information released is reliable. To capture this notion of partial verifiability, we model
information as being verified stochastically over time in the sense that releasing informa-
tion starts a learning process for Receiver akin to processes in Bolton and Harris (1999),
Keller, Rady and Cripps (2005). In Brocas and Carrillo (2007), an uninformed Sender,
wishing to influence Receiver’s beliefs, chooses when to stop a public learning process.11

In contrast, in our model Sender is privately informed and she chooses when to start
rather than stop the process.12

Our application to US presidential scandals also contributes to the literature on the ef-
fect of biased media on voters’ behavior (e.g., Mullainathan and Shleifer, 2005; Gentzkow

9See also Jung and Kwon (1988), Shin (1994), and Dziuda (2011). The unraveling result might also fail
if disclosure is costly (Jovanovic, 1982) or information acquisition is costly (Shavell, 1994).

10Shin (2003, 2006) also study dynamic verifiable information disclosure, but Sender there does not
strategically time disclosure. A series of recent papers consider dynamic information disclosure with differ-
ent focuses to us, including: Ely, Frankel and Kamenica (2015); Ely (2016); Grenadier, Malenko and Malenko
(2016); Hörner and Skrzypacz (2016); Bizzotto, Rüdiger and Vigier (2017); Che and Hörner (2017); Orlov,
Skrzypacz and Zryumov (2017).

11Brocas and Carrillo (2007) also show that if the learning process is privately observed by Sender but
the stopping time is observed by Receiver, then in equilibrium Receiver learns Sender’s information (akin
to the unraveling result), as if the learning process was public. Gentzkow and Kamenica (2017) generalize
this result.

12In our model Sender can influence only the starting time of the experimentation process, but not the
design of the process itself. Instead, in the Bayesian persuasion literature (e.g., Rayo and Segal, 2010; Ka-
menica and Gentzkow, 2011), Sender fully controls the design of the experimentation process.
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and Shapiro, 2006; Duggan and Martinelli, 2011).13 DellaVigna and Kaplan (2007) provide
evidence that biased media have a significant effect on the vote share in US presidential
elections. We focus on when a biased source chooses to release information and show
that voters respond differently to information released at different times in the election
campaign.

2 The Model

In our model, Sender’s payoff depends on Receiver’s posterior belief about Sender’s type
at a deadline. We begin with a benchmark model in which (i) Sender’s payoff is equal to
Receiver’s posterior belief, (ii) Sender is perfectly informed, (iii) Sender’s type does not
affect when the arm arrives, and (iv) the deadline is deterministic. Section 3.2 relaxes each
of these assumptions and shows that our main results continue to hold.

2.1 Benchmark Model

There are two players: Sender (she) and Receiver (he). Sender is one of two types θ ∈
{G, B}: good (θ = G) or bad (θ = B). Let π ∈ (0, 1) be the common prior belief that Sender
is good.

Time is discrete and indexed by t ∈ {1, 2, . . . , T + 1}. Sender is concerned about being
perceived as good at a deadline t = T. In particular, the expected payoff of type θ ∈
{G, B} is given by vθ (s) = s, where s is Receiver’s posterior belief at t = T that θ = G.
Time T + 1 combines all future dates after the deadline, including never.

An arm arrives to Sender at a random time according to distribution F with support
{1, 2, . . . , T + 1}. If the arm has arrived, Sender privately observes her type and can pull
the arm immediately or at any time after its arrival, including time T + 1. Because Sender
moves only after the arrival of the arm, it is immaterial for the analysis whether Sender
learns her type when the arm arrives or when the game starts.

Pulling the arm starts a learning process for Receiver. Specifically, if the arm is pulled
at a time τ before the deadline (τ ≤ T), Receiver observes realizations of a stochastic
process

L = {Lθ (t; τ) , τ ≤ t ≤ T} .

The process L can be viewed as a sequence of signals, one per each time from τ to T with
the precision of the signal at time t possibly depending on τ, t, and all previous signals.

13See also Prat and Stromberg (2013) for a review of this literature in the broader context of the relation-
ship between media and politics.
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Notice that if the arm is pulled at τ = T, Receiver observes the realization Lθ (T, T) be-
fore taking his action. For notational convenience, we assume that L is either discrete or
atomless.

It is more convenient to work directly with the distribution of beliefs induced by the
process L rather than with the process itself. Recall that s is Receiver’s posterior belief that
Sender is good after observing all realizations of the process from τ to T. Let m denote
Receiver’s interim belief that Sender is good upon observing that she pulls the arm at time
τ and before observing any realization of L. Given τ and m, the process L generates a
distribution H (. | τ, m) over Receiver’s posterior beliefs s; given τ, m, and θ, the process
L generates a distribution Hθ (. | τ, m) over s. Notice that if the arm is pulled after the
deadline (τ = T + 1), then the distributions Hθ (. | τ, m) and H (. | τ, m) assign probability
one to s = m.

Assumption 1 says that (i) pulling the arm later reveals strictly less information about
Sender’s type in Blackwell (1953)’s sense and (ii) the learning process never fully reveals
Sender’s type.

Assumption 1. (i) For all τ, τ′ ∈ {1, 2, . . . , T + 1} such that τ < τ′, H (. | τ, π) is a strict
mean-preserving spread of H (. | τ′, π). (ii) The support of H (. | 1, π) is a subset of (0, 1).

For example, consider a set of (imperfectly informative) signals S with some joint
distribution and suppose that pulling the arm at τ reveals to Receiver a set of signals
Sτ ⊂ S . Assumption 1 holds whenever Sτ′ is a proper subset of Sτ for all τ < τ′.

We characterize the set of perfect Bayesian equilibria, henceforth equilibria. Let µ (τ)

be Receiver’s equilibrium interim belief that Sender is good given that Sender pulls the
arm at time τ ∈ {1, 2, . . . , T + 1}. Also, let Pθ denote an equilibrium distribution of
pulling time τ given Sender’s type θ (with the convention that Pθ (0) = 0).

2.2 Discussion

We now pause to interpret key ingredients of our model using our main application—the
timing of US presidential scandals in the lead-up to elections. Receiver is the median voter
and Sender is an opposition member or organization wishing to reduce a candidate’s
chances of being elected. The candidate is either fit (θ = B) or unfit (θ = G) to run the
country. The prior belief that the candidate is unfit is π. At a random time, the opposition
may privately receive scandalous material against the candidate (arrival of the arm). The
opposition can choose when and whether to release the material (pull the arm). After it is
released, the material is subject to scrutiny, and the median voter gradually learns about
the candidate’s type. Crucially, the opposition has private information about what the
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expected outcome of scrutiny is. We say that the scandal is real (fake) if further scrutiny
is likely to reveal that the candidate is unfit (fit) to run the country. If, at the time of the
election (deadline), the median voter believes that the candidate is likely to be unfit to run
the country, the candidate’s chances of being elected are weak.

Notice that releasing a scandal might backfire. For example, before the FBI reopened
its investigation over Secretary Clinton’s emails, the median US voter had some belief
π that Secretary Clinton had grossly mishandled classified information and was there-
fore unfit to be commander in chief. Further investigations could have revealed that her
conduct was more than a mere procedural mistake. In this case, the median voter’s pos-
terior belief s would have been higher than π. On the contrary, the FBI might not have
found any evidence of misconduct, despite investigating yet more emails. In this case,
the median voter’s posterior belief s would have been lower than π.

In this application, Sender’s payoff depends on Receiver’s belief at the deadline be-
cause this belief affects the probability that the median voter elects the candidate. Specif-
ically, suppose that the opposition is uncertain about the ideological position r of the
median voter, which is uniformly distributed on the unit interval. If the candidate is not
elected, the median voter’s payoff is normalized to 0. If the incumbent is elected, the
median voter with position r gets payoff r− 1 if the candidate is unfit and payoff r other-
wise. The opposition gets payoff 0 if the candidate is elected and 1 otherwise. Therefore,
Sender’s expected payoff is given by

vθ (s) = Pr (r ≤ s) = s for θ ∈ {G, B} .

Furthermore, Receiver’s expected payoff u (s) is given by

u (s) =
ˆ 1

s
[s (r− 1) + (1− s) r] dr =

(1− s)2

2
.

The Receiver’s ex-ante expected payoff is therefore given by

E [u (s)] =
(1−E [s])2 + E

[
(s−E [s])2

]
2

=
(1− π)2 + Var [s]

2
. (1)
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3 Analysis

3.1 Equilibrium

We begin our analysis by deriving statistical properties of the model that rely only on
players being Bayesian. These properties link the pulling time and Receiver’s interim
belief to the expectation of Receiver’s posterior belief. First, from (good and bad) Sender’s
perspective, keeping the pulling time constant, a higher interim belief results in a higher
expected posterior belief. Furthermore, pulling the arm earlier reveals more information
about Sender’s type. Therefore, from bad (good) Sender’s perspective, pulling the arm
earlier decreases (increases) the expected posterior belief that Sender is good. In short,
Lemma 1 says that credibility is beneficial for both types of Sender, whereas scrutiny is
detrimental for bad Sender but beneficial for good Sender.

Lemma 1 (Statistical Properties). Let E [s | τ, m, θ] be the expectation of Receiver’s posterior
belief s conditional on the pulling time τ, Receiver’s interim belief m, and Sender’s type θ. For all
τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′, and all m, m′ ∈ (0, 1] such that m < m′,

1. E [s | τ, m′, θ] > E [s | τ, m, θ] for θ ∈ {G, B};

2. E [s | τ′, m, B] > E [s | τ, m, B];

3. E [s | τ, m, G] > E [s | τ′, m, G].

Proof. In Appendix A.

We now show that in any equilibrium, (i) good Sender strictly prefers to pull the arm
whenever bad Sender weakly prefers to do so, and therefore (ii) if the arm has arrived,
good Sender pulls it with certainty whenever bad Sender pulls it with positive probability.

Lemma 2 (Good Sender’s Behavior). In any equilibrium:

1. For all τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′ and µ (τ) , µ (τ′) ∈ (0, 1), if bad Sender
weakly prefers to pull the arm at τ than at τ′, then µ (τ) > µ (τ′) and good Sender strictly
prefers to pull the arm at τ than at τ′;

2. For all τ ∈ {1, . . . , T} in the support of PB, we have PG (τ) = F (τ).

Proof. In Appendix B.
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The proof relies on the three statistical properties from Lemma 1. The key to Lemma 2
is that if bad Sender weakly prefers to pull the arm at some time τ than at τ′ > τ, then
Receiver’s interim belief µ (τ) must be greater than µ(τ′). Intuitively, bad Sender is will-
ing to endure more scrutiny only if pulling the arm earlier boosts her credibility. Since
µ (τ) > µ (τ′), good Sender strictly prefers to pull the arm at the earlier time τ, as she
benefits from both scrutiny and credibility.

Next, we show that bad Sender pulls the arm with positive probability whenever
good Sender does, but bad Sender pulls the arm later than good Sender in the first-order
stochastic dominance sense. Moreover, bad sender pulls the arm strictly later unless no
type pulls the arm. An immediate implication is that bad Sender always withholds the
arm with positive probability.

Lemma 3 (Bad Sender’s Behavior). In any equilibrium, PG and PB have the same supports
and, for all τ ∈ {1, . . . , T} with PG (τ) > 0, we have PB (τ) < PG (τ). Therefore, in any
equilibrium, PB (T) < F (T).

Proof. In Appendix B.

Intuitively, if there were a time τ ∈ {1, . . . , T} at which only good Sender pulled the
arm with positive probability, then, upon observing that the arm was pulled at τ, Receiver
would conclude that Sender was good. But then, to achieve this perfect credibility,14 bad
Sender would want to mimic good Sender and therefore strictly prefer to pull the arm
at τ, contradicting that only good Sender pulled the arm at τ. Nevertheless, bad Sender
always delays relative to good Sender. Indeed, if bad and good Sender were to pull the
arm at the same time, then Sender’s credibility would not depend on the pulling time.
But with constant credibility, bad Sender would never pull the arm to avoid scrutiny.
Therefore, good Sender must necessarily pull the arm earlier than bad Sender.

We now show that, at any time when good Sender pulls the arm, bad Sender is indif-
ferent between pulling and not pulling the arm. That is, in equilibrium, pulling the arm
earlier boosts Sender’s credibility as much as to exactly offset the expected cost of longer
scrutiny for bad Sender. Thus, Receiver’s interim beliefs are determined by bad Sender’s
indifference condition (2) and the consistency condition (3). The consistency condition
follows from Receiver’s interim beliefs being determined by Bayes’s rule and Sender’s
equilibrium strategy. Roughly, it says that a weighted average of interim beliefs is equal
to the prior belief.

14By part (ii) of Assumption 1, such perfect credibility can never be dented: Hθ (. | τ, 1) assigns proba-
bility 1 to s = 1 for all θ and τ.
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Lemma 4 (Receiver’s Beliefs). In any equilibrium,

ˆ
vB (s) dHB (s|τ, µ (τ)) = vB (µ (T + 1)) for all τ in the support of PG, (2)

∑
τ∈supp(PG)

1− µ (τ)

µ (τ)
(PG (τ)− PG (τ − 1)) =

1− π

π
. (3)

Proof. In Appendix B.

We now characterize the set of equilibria. Part 1 of Proposition 1 states that, for any
set of times, there exists an equilibrium in which good Sender pulls the arm only at times
in this set. Moreover, in any equilibrium, at any time when good Sender pulls the arm,
she pulls it with probability 1 and bad Sender pulls it with strictly positive probability.
The probability with which bad Sender pulls the arm at any time is determined by the
condition that the induced interim beliefs keep bad Sender exactly indifferent between
pulling the arm then and not pulling it at all. Part 2 of Proposition 1 characterizes the
set of divine equilibria of Banks and Sobel (1987) and Cho and Kreps (1987).15 In such
equilibria, good Sender pulls the arm as soon as it arrives.

Proposition 1 (Equilibrium).

1. For any T ⊆ {1, . . . , T + 1} with T + 1 ∈ T , there exists an equilibrium in which the
support of PG is T . In any equilibrium, PG and PB have the same supports, and for all τ in
the support of PG, PG (τ) = F (τ) and

PB (τ) =
π

1− π ∑
t∈supp(PG) s.t. t≤τ

1− µ (t)
µ (t)

(PG (t)− PG (t− 1)) , (4)

where µ (τ) ∈ (0, 1) is uniquely determined by (2) and (3).

2. There exists a divine equilibrium. In any divine equilibrium, for all τ ∈ {1, . . . , T + 1},
PG (τ) = F (τ) .

Proof. In Appendix B.

15Divinity is a standard refinement used by the signalling literature. It requires Receiver to attribute a
deviation to those types of Sender who would choose it for the widest range of Receiver’s interim beliefs.
In our setting, the set of divine equilibria coincides with the set of monotone equilibria in which Receiver’s
interim belief about Sender is non-increasing in the pulling time. Specifically, divinity rules out all equilibria
in which both types of Sender do not pull the arm at some times, because Receiver’s out-of-equilibrium
beliefs for those times are sufficiently unfavorable.
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Although there exist a plethora of divine equilibria, in all such equilibria, pulling prob-
abilities of good and bad Sender, as well as Receiver’s beliefs, are uniquely determined
by PG = F and (2)-(4). In this sense, there exists an essentially unique divine equilibrium.

Our main testable prediction is that bad Sender pulls the arm strictly later than good
Sender in the likelihood ratio order sense.

Corollary 1 (Equilibrium Dynamics). In the divine equilibrium,

PB (τ)− PB (τ − 1)
PG (τ)− PG (τ − 1)

<
PB (τ + 1)− PB (τ)

PG (τ + 1)− PG (τ)
for all τ ∈ {1, . . . , T} .

Proof. In Appendix B.

Corollary 1 implies that, conditional on pulling time τ being between any two times τ′

and τ′′, bad Sender pulls the arm strictly later than good Sender in the first-order stochas-
tic dominance sense (Theorem 1.C.5, Shaked and Shanthikumar, 2007):

PB (τ)− PB (τ
′)

PB (τ′′)− PB (τ′)
<

PG (τ)− PG (τ′)

PG (τ′′)− PG (τ′)
for all τ′ < τ < τ′′.

Our model also gives predictions about the evolution of Receiver’s beliefs. Pulling
the arm earlier is more credible as Receiver’s interim beliefs µ (τ) decrease over time.
Moreover, pulling the arm instantaneously boosts credibility in the sense that Receiver’s
belief at any time τ about Sender’s type is higher if Sender pulls the arm than if she does
not.

Corollary 2 (Belief Dynamics). Let µ̃ (τ) denote Receiver’s interim belief that Sender is good
given that she has not pulled the arm before or at τ. In the divine equilibrium,

µ (τ − 1) > µ (τ) > µ̃ (τ − 1) > µ̃ (τ) for all τ ∈ {2, . . . , T} .

Proof. In Appendix B.

3.2 Discussion of Model Assumptions

We now discuss how our results change (or do not change) if we relax several of the as-
sumptions made in our benchmark model. We discuss each assumption in a separate
subsection. The reader may skip this section without any loss of understanding of subse-
quent sections.
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3.2.1 Nonlinear Sender’s Payoff

In the benchmark model, we assume that Sender’s payoff is linear in Receiver’s posterior
belief: vG (s) = vB (s) = s for all s. In our motivating example, this linearity arises because
the opposition is uncertain about the ideological position r of the median voter. If there is
no such uncertainty, then the median voter reelects the incumbent whenever s is below r,
where r ∈ (0, 1) is a constant. Therefore, Sender’s payoff is a step function:

vθ (s) = v (s) =

0 if s < r;

1 if s > r.
(5)

We now allow for Sender’s payoff to be non-linear in Receiver’s posterior belief and
even type dependent. To understand how the shapes of the payoff functions vG and
vB affect our analysis, we extend the statistical properties of Lemma 1, which describe
the evolution of Receiver’s posterior belief from Sender’s perspective. First and not sur-
prisingly, a more favorable interim belief results in more favorable posterior beliefs for
all types of Sender and for all realizations of the process. Moreover, Receiver’s poste-
rior belief follows a supermartingale (submartingale) process from bad (good) Sender’s
perspective. Lemma 1′ formalizes these statistical properties, using standard stochastic
orders (see, e.g., Shaked and Shanthikumar, 2007). Distribution Z2 strictly dominates dis-
tribution Z1 in the increasing convex (concave) order if there exists a distribution Z such
that Z2 strictly first-order stochastically dominates Z and Z is a mean-preserving spread
(reduction) of Z1.

Lemma 1′ (Statistical Properties). For all τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′, and all
m, m′ ∈ (0, 1] such that m < m′,

1. Hθ (. | τ, m′) strictly first-order stochastically dominates Hθ (. | τ, m) for θ ∈ {G, B};

2. HB (. | τ′, m) strictly dominates HB (. | τ, m) in the increasing concave order;

3. HG (. | τ, m) strictly dominates HG (. | τ′, m) in the increasing convex order.

Proof. In Appendix A.

To interpret Lemma 1′, we assume that the payoff of both types of Sender is a continu-
ous strictly increasing function of Receiver’s posterior belief, so that both types of Sender
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want to look good.16 Part 1 says that credibility is beneficial for both types of Sender,
regardless of the shape of their payoff functions. Part 2 (part 3) says that from bad (good)
Sender’s perspective, pulling the arm earlier results in more spread out and less (more)
favorable posteriors provided that the interim belief does not depend on the pulling time.
So scrutiny is detrimental for bad Sender if her payoff is not too convex but beneficial for
good Sender if her payoff is not too concave. Therefore, for a given process satisfying
Assumption 1, Proposition 1 continues to hold if bad Sender is not too risk-loving and
good Sender is not too risk-averse. In fact, Proposition 1 continues to hold verbatim if
bad Sender’s payoff is weakly concave and good Sender’s payoff is weakly convex (the
proof in Appendix B explicitly allows for this possibility).17

Much less can be said in general if the payoff functions vG and vB have an arbitrary
shape. For example, if vG is sufficiently concave, then good Sender can prefer to delay
pulling the arm to reduce the spread in posterior beliefs. Likewise, if vB is sufficiently
convex, then bad Sender can prefer to pull the arm earlier than good Sender to increase
the spread in posterior beliefs. These effects work against our credibility-scrutiny tradeoff
and Proposition 1 no longer holds.18 Nevertheless, bad Sender weakly delays pulling the
arm relative to good Sender under the following single crossing assumption.

Assumption 2. For all τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′ and µ (τ) , µ (τ′) ∈ (0, 1), if
bad Sender weakly prefers to pull the arm at τ than at τ′, then good Sender strictly prefers to pull
the arm at τ than at τ′.

This assumption holds in the benchmark model by Lemma 2. This assumption also
holds if Sender’s payoff is the step function in (5) whenever pulling the arm later reveals
strictly less useful information about Sender’s type, in the sense that Receiver is strictly
worse off.19

16It is sufficient for our results to assume that Sender’s payoff is an upper hemicontinuous correspon-
dence (rather than a continuous function) of Receiver’s posterior belief. For example, this is the case if
Sender’s and Receiver’s payoffs depend on Receiver’s action and Sender’s type, and Receiver’s action set
is finite. In the above example with constant ideological position, Sender’s payoff in (5) is a correspondence
with v (r) = [0, 1], because it is optimal for Receiver to randomize between the two actions when s = r.

17More generally, Proposition 1 holds whenever svG (s) is strictly convex and (1− s) vB (s) is strictly
concave, i.e., for all s, Sender’s Arrow-Prat coefficient of absolute risk aversion −v′′θ (s) /v′θ (s) is less than
2/s for good Sender and more than −2/ (1− s) for bad Sender. For the Poisson model of Section 4, Propo-
sition 1 continues to hold for any risk attitude of good Sender and only relies on bad Sender being not too
risk-loving.

18These effects are common in the Bayesian persuasion literature (Kamenica and Gentzkow, 2011). In
this literature, Sender is uninformed. Therefore, from her perspective, Receiver’s beliefs follow a martingale
process (Ely et al., 2015), so only convexity properties of Sender’s payoff affect the time at which she pulls
the arm.

19The inequality (6) holds if and only if
´ 1

x H (s | τ′, π) ds >
´ 1

x H (s | τ, π) ds for all x ∈ (0, 1). In com-
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Lemma 2′ (Good Sender’s Behavior). Let vθ be given by (5). If for all τ, τ′ ∈ {1, . . . , T + 1}
such that τ < τ′

ˆ 1

r
H
(
s | τ′, m

)
ds >

ˆ 1

r
H (s | τ, m) ds for all m ∈ (0, 1) , (6)

then Assumption 2 holds.

Proof. In Appendix B.

If Assumption 2 holds and vθ is strictly increasing, then in the unique divine equi-
librium, good Sender pulls the arm as soon as it arrives and bad Sender pulls the arm
weakly later than good Sender—there may exist an equilibrium in which both good and
bad Sender pull the arm as soon as it arrives.20

3.2.2 Imperfectly Informed Sender

In many applications, Sender does not know with certainty whether pulling the arm
would start a good or bad learning process for Receiver. For example, when announcing
the reopening of the Clinton investigation, Director Comey could not know for certain
what the results of the investigation would eventually be.

We generalize our model to allow for Sender to only observe a signal σ ∈ {σB, σG}
about an underlying binary state θ, with normalization

σG = Pr (θ = G | σG) > π > Pr (θ = G | σB) = σB.

The statistical properties of Lemma 1 still hold.

Lemma 1′′ (Statistical Properties). Let E [s | τ, m, σ] be the expectation of Receiver’s posterior
belief s conditional on the pulling time τ, Receiver’s interim belief m, and Sender’s signal σ. For
all τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′, and all m, m′ ∈ (0, 1] such that m < m′,

1. E [s | τ, m′, σ] > E [s | τ, m, σ];

2. E [s | τ′, m, σB] > E [s | τ, m, σB];

parison, part (i) of Assumption 1 holds if and only if
´ 1

x H (s | τ′, π) ds ≥
´ 1

x H (s | τ, π) ds for all x ∈ (0, 1)
with strict inequality for some x ∈ (0, 1).

20For vθ given by (5), we can show that bad Sender withholds the arm with strictly positive probability,
PB (T) < F (T), in all divine equilibria, if π > r. In this case, however, vθ is not strictly increasing, and there
exist divine equilibria in which good Sender does not always pull the arm as soon as it arrives. For exam-
ple, there exists a divine equilibrium in which bad and good Sender never pull the arm by the deadline:
PG (T) = PB (T) = 0. In this equilibrium, both bad and good Sender enjoy the highest possible payoff, 1.
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3. E [s | τ, m, σG] > E [s | τ′, m, σG].

Proof. In Appendix A.

These statistical results ensure that credibility is always beneficial for Sender, whereas
scrutiny is detrimental for Sender with signal σB but beneficial for Sender with signal σG.
Therefore, all our results carry over.

Moreover, we can extend our analysis to allow for signal σ to be continuously dis-
tributed on the interval [σ, σ̄), with normalization σ = Pr (θ = G | σ). In particular, in
this case, there exists a partition equilibrium with σ̄ = σ0 > σ1 > · · · > σT+1 = σ such
that Sender σ ∈ [σt, σt−1) pulls the arm as soon as it arrives unless it arrives before time
t ∈ {1, . . . , T + 1} (and pulls the arm at time t if it arrives before t).

3.2.3 Type-Dependent Arrival of the Arm

In many applications, it is more reasonable to assume that the distribution of the arrival
of the arm differs for good and bad Sender. For example, fake scandals may be easy to
fabricate, whereas real scandals need time to be discovered.

We generalize the model to allow for different distributions of the arrival of the arm
for good and bad Sender. In particular, the arm arrives at a random time according to
distributions FG = F for good Sender and FB for bad Sender.

The proof of Proposition 1 (in Appendix B) explicitly allows for the arm to arrive
(weakly) earlier to bad Sender than to good Sender in the first-order stochastic dominance
sense: FB (t) ≥ FG (t) for all t. This assumption is clearly satisfied if bad Sender has the
arm from the outset or if bad and good Sender receive the arm at the same time.

More generally, Proposition 1 continues to hold verbatim unless the arm arrives suffi-
ciently later to bad Sender than to good Sender such that FB (t) < PB (t) for some t, where
PB (t) is given by (4). But even then, Corollary 1 still holds. That is, bad Sender pulls the
arm strictly later than good Sender. Yet, bad Sender may do so for the simple mechanical
(rather than strategic) reason that the arm arrives to her later than to good Sender.21

3.2.4 Stochastic Deadline

In the benchmark model, we assume that the deadline T is fixed and common knowledge.
In some applications, the deadline T may be stochastic. In particular, suppose that T is
a random variable distributed on {1, . . . , T̄} where time runs from 1 to T̄ + 1. Now the

21In this case, there exist some time τ at which bad Sender strictly prefers to pull the arm and (2) no
longer holds for τ.
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process L has T as a random variable rather than a constant. For this process, we can
define the ex-ante distribution H of posteriors at T, where H depends only on pulling time
τ and interim belief m. Notice that Assumption 1 still holds for this ex-ante distribution of
posteriors for any τ, τ′ ∈ {1, . . . , T̄ + 1}. Therefore, from the ex-ante perspective, Sender’s
problem is identical to the problem with a deterministic deadline and all results carry
over.

4 Poisson Model

To get more precise predictions about the strategic timing of information release, we now
assume that the arrival of the arm and Receiver’s learning follow Poisson processes. In
this Poisson model, time is continuous t ∈ [0, T].22 The arm arrives to Sender at Poisson
rate α, so that F (t) = 1− e−αt. Once Sender pulls the arm, a breakdown occurs at Pois-
son rate λ if Sender is bad, but never occurs if Sender is good, so that H (. | τ, m) puts
probability (1−m)

(
1− e−λ(T−τ)

)
on s = 0 and the complementary probability on

s =
m

m + (1−m) e−λ(T−τ)
.

Returning to our main application, the Poisson model assumes that scandals can be
conclusively debunked, but cannot be proven real. It also assumes that the opposition
receives the scandalous material against the president at a constant rate, independent of
whether they are real or fake. As discussed in Section 3.2.3, the results would not change if
real documents take more time to be discovered than fake document take to be fabricated.

Our benchmark model does not completely nest the Poisson model. In fact, part (ii)
of Assumption 1, that the learning process never fully reveals Sender’s type, fails in the
Poisson model because a breakdown fully reveals that Sender is bad. Nevertheless, if only
part (i) of Assumption 1 is satisfied, a version of Proposition 1 continues to hold, with the
difference that bad Sender never pulls the arm before some time t̄. Specifically, Proposi-
tion 1 holds for all τ ≥ t̄, whereas µ (τ) = 1 and PB (τ) = 0 for all τ < t̄. Intuitively,
even if Receiver believes that only good Sender pulls the arm before t̄, bad Sender strictly
prefers to pull the arm after t̄ to reduce the risk that Receiver fully learns that Sender is
bad.

We can, therefore, explicitly characterize the divine equilibrium of the Poisson model.

22Technically, we use the results from Section 3.1 by treating continuous time as an appropriate limit of
discrete time.
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First, good Sender pulls the arm as soon as it arrives.23 Second, bad Sender is indifferent
between pulling the arm at any time t ≥ t̄ ≥ 0 and not pulling it at all. Third, bad Sender
strictly prefers to delay pulling the arm if t < t̄.

In the divine equilibrium of the Poisson model, µ (t) = 1 for all t < t̄, and equations
(2) and (3) become

µ (t) e−λ(T−t)

µ (t) + (1− µ (t)) e−λ(T−t)
= µ (T) for all t ≥ t̄,

ˆ T

0
α

1− µ (t)
µ (t)

e−αtdt +
1− µ (T)

µ (T)
e−αT =

1− π

π
.

Adding the boundary condition limt↓t̄ µ (t) = 1 yields the explicit solution µ (t) and
uniquely determines t̄.

Proposition 2. In the divine equilibrium, good Sender pulls the arm as soon as it arrives and
Receiver’s interim belief that Sender is good given pulling time t is:

µ (t) =


µ(T)

1−µ(T)(eλ(T−t)−1)
if t ≥ t̄;

1 otherwise,

where µ (T) is Receiver’s posterior belief if the arm is never pulled and

t̄ =

0 if π < π̄;

T − 1
λ ln 1

µ(T) otherwise,

µ (T) =


[

αeλT+λe−αT

α+λ + 1−π
π

]−1
if π < π̄;[

(α+λ)(1−π)
λπ eαT + 1

]− λ
α+λ otherwise,

π̄ =

[
1 +

λ

α + λ

(
eλT − e−αT

)]−1

.

The parameters of the model affect welfare directly and through Sender’s equilib-
rium behavior. Proposition 3 says that, in the divine equilibrium, direct effects dominate.
Specifically, a higher prior belief π results in higher posterior beliefs, which increases

23In every divine equilibrium, PG (t) = F (t) for all t ∈ [t̄, T] and PB (t) = 0 for all t ∈ [0, t̄]. But for each
distribution P̂ such that P̂ (t) ≤ F (t) for all t ∈ [0, t̄) and P̂ (t) = F (t) for all t ∈ [t̄, T], there exists a divine
equilibrium with PG = P̂. For ease of exposition, we focus on the divine equilibrium in which PG (t) = F (t)
for all t ∈ [0, T].
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both bad and good Sender’s welfare. Moreover, a higher breakdown rate λ or a higher
arrival rate α allows Receiver to learn more about Sender, which decreases (increases)
bad (good) Sender’s welfare. Proposition 3 also derives comparative statics on Receiver’s
welfare given by (1).24

Proposition 3. In the divine equilibrium,

1. the expected payoff of bad Sender increases with π but decreases with λ and α;

2. the expected payoff of good Sender increases with π, λ, and α;

3. the expected payoff of Receiver decreases with π but increases with λ and α.

Proof. In Appendix C.

4.1 Static Analysis

We now explore how the parameters of the model affect the probability that Sender re-
leases information. The probability that bad Sender pulls the arm is

PB (T) = 1− π

1− π

1− µ (T)
µ (T)

e−αT, (7)

which follows from

µ (T) =
πe−αT

πe−αT + (1− π) (1− PB (T))
. (8)

Proposition 4 says that bad Sender pulls the arm with a higher probability if the prior
belief π is lower, if the breakdown rate λ is lower, or if the arrival rate α is higher.

Proposition 4. In the divine equilibrium, the probability that bad Sender pulls the arm decreases
with π and λ but increases with α.

Proof. In Appendix C.

Intuitively, if the prior belief π is higher, bad Sender has more to lose in case of a
breakdown. Similarly, if the breakdown rate λ is higher, pulling the arm is more likely

24For an arbitrary Receiver’s Bernoulli payoff function, which depends on Receiver’s action and
Sender’s type, the second-order Taylor approximation of Receiver’s expected payoff increases with the
variance of his posterior belief, and therefore with λ and α. In contrast, the comparative statics with re-
spect to π are less robust. For example, if Receiver’s Bernoulli payoff function is − (a− θ)2, where a ∈ R

is Receiver’s action and θ ∈ {0, 1} is Sender’s type, then Receiver’s expected payoff decreases with π for
π < 1/2 and increases with π for π > 1/2.
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to reveal that Sender is bad. In both cases, bad Sender is more reluctant to pull the arm.
In contrast, if the arrival rate α is higher, good Sender is more likely to pull the arm and
Receiver will believe that Sender is bad with higher probability if she does not pull the
arm. In this case, bad Sender is more willing to pull the arm.

The total probability that Sender pulls the arm is given by the weighted sum of the
probabilities PB (T) and PG (T) that bad Sender and good Sender pull the arm:

PB (T) = πPG (T) + (1− π) PB (T) = 1− πe−αT

µ (T)
. (9)

A change in λ affects PB (T), but not PG (T); a change in α affects both PB (T) and PG (T)
in the same direction. Therefore, Sender pulls the arm with a higher total probability
if the breakdown rate is lower or if the arrival rate is higher. The prior belief π has a
direct and an indirect effect on the total probability that Sender pulls the arm. On the one
hand, holding PB (T) constant, P(T) directly increases with π, because PG (T) > PB (T).
On the other hand, P (T) indirectly decreases with π, because PB (T) decreases with π.
Proposition 5 says that the indirect effect dominates the direct effect when π is sufficiently
low.

Proposition 5. In the divine equilibrium, the total probability that Sender pulls the arm decreases
with λ, increases with α, and is quasiconvex in π: decreases with π if

π <
αeαT

αeαT + λ (eαT − 1)
∈ (0, 1)

and increases with π otherwise.

Proof. In Appendix C.

The probabilities PG (T) = 1− e−αT and PB (T) that good Sender and bad Sender pull
the arm also determine Receiver’s posterior belief µ (T). By (8), µ (T) decreases with the
breakdown rate λ, because PB (T) decreases with λ. Equation (8) also suggests that there
are direct and indirect effects of the prior belief π and the arrival rate α on µ (T). On the
one hand, holding PB (T) constant, µ (T) directly increases with π and decreases with α.
On the other hand, µ (T) indirectly decreases with π and increases with α, because PB (T)
decreases with π and increases with α. Proposition 6 says that the direct effect always
dominates the indirect effect in the Poisson model.

Proposition 6. In the divine equilibrium, Receiver’s posterior belief if the arm is never pulled
increases with π but decreases with λ and α.
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Proof. In Appendix C.

4.2 Dynamic Analysis

The Poisson model also allows for a more detailed analysis of the strategic timing of
information release. By Proposition 2, bad Sender begins to pull the arm at time t̄. In
the spirit of Proposition 4, bad Sender begins to pull the arm later if the prior belief π is
higher, if the breakdown rate λ is higher, or if the arrival rate α is lower.

Proposition 7. In the divine equilibrium, t̄ increases with π and λ but decreases with α.

At each time t after t̄, bad Sender pulls the arm with a strictly positive probability den-
sity pB (t) (see Figure 2a). Proposition 8 says that pB (t) first increases and then decreases
with time.

Proposition 8. In the divine equilibrium, the probability density that bad Sender pulls the arm
at time t is quasiconcave: increases with t if

t < tb ≡ T − 1
λ

ln
(

α

α + λ

1
µ (T)

)
and decreases with t otherwise.

Proof. In Appendix C.

Intuitively, the dynamics of pB (t) are driven by a strategic and a mechanic force.
Strategically, as in Corollary 1, bad Sender delays pulling the arm with respect to good
Sender, so that the likelihood ratio pB (t) /pG (t) increases with time, where pG (t) =

αe−αt is the probability density that good Sender pulls the arm at time t. Mechanically,
pB (t) roughly follows the dynamics of pG (t). If the arrival rate α is sufficiently small,
so that the density pG (t) barely changes over time, the strategic force dominates and the
probability that bad sender pulls the arm monotonically increases with time (tb > T). In-
stead, if the arrival rate α is sufficiently large, so that pG (t) rapidly decreases over time,
the mechanic force dominates and the probability that bad sender pulls the arm mono-
tonically decreases with time (tb < T).

The total probability density p (t) that Sender pulls the arm is a weighted sum of pG(t)
and pB (t), so that p (t) = πpG (t) + (1− π) pB (t) (see Figure 2a). Therefore, until t̄,
p (t) = πpG (t), and thereafter, as in Proposition 8, p (t) first increases and then decreases
with time.
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Figure 2: Pulling density and breakdown probability; α = 1, λ = 2, π = .5, T = 1.

(a) dotted: pG (t); solid: pB (t); dashed: p (t). (b) dotted: λ (T − t); solid: pB(t)
pG(t)

; dashed: Q (t).

Proposition 9. In the divine equilibrium, the total probability density that Sender pulls the arm
at time t decreases with t from 0 to t̄ and is quasiconcave in t on the interval [t̄, T]: increases with
t if

t̄ < t < ts ≡ T − 1
λ

ln
(

α

α + λ

1 + µ (T)
µ (T)

)
and decreases with t if t > ts.

Proof. In Appendix C.

Let the breakdown probability Q (t) be the probability that a breakdown occurs before
the deadline given that the arm is pulled at time t (see Figure 2b). Proposition 10 says
that, as time passes, the breakdown probability first increases and then decreases.25

Proposition 10. In the divine equilibrium, the breakdown probability is quasiconcave: increases
with t if

t < tb ≡ T − 1
λ

ln
(

1 + µ (T)
2µ (T)

)
< T

and decreases with t otherwise.

Proof. In Appendix C.

Intuitively, the breakdown probability increases with the amount of scrutiny and with
the likelihood ratio pB (t) /pG (t). Obviously, Sender is exposed to more scrutiny if she

25If the arrival rate α is sufficiently small, then tb is negative and hence the breakdown probability mono-
tonically decreases with time.
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pulls the arm earlier. But the likelihood ratio pB (t) /pG (t) is lower earlier, because bad
Sender strategically delays pulling the arm. Proposition 10 says that this strategic effect
dominates for earlier times.

5 Applications

5.1 US Presidential Scandals

Returning to our presidential scandals example, the main prediction of our model is that
fake scandals are released later than real scandals. We explore this prediction using Ny-
han’s (2015) data on US presidential scandals from 1977 to 2008. For each week, the data
report whether a new scandal involving the current US president was first mentioned in
the Washington Post. Although scandals might have first appeared on other outlets, we
agree with Nyhan that the Washington Post is likely to have mentioned such scandals im-
mediately thereafter. As our model concerns scandals involving the incumbent in view of
his possible reelection, we focus on all the presidential elections in which the incumbent
was a candidate. Therefore we consider only the first term of each president from 1977 to
2008, beginning on the first week of January after the president’s election.26,27 In all cases,
the election was held on the 201st week after this date. We construct the variable weeks to
election as the difference between the election week at the end of the term and the release
week of the scandal.

For each scandal,28 we locate the original Washington Post article as well as other
contemporary articles on The New York Times and the Los Angeles Times. We then
search for subsequent articles on the same scandal in following years until 2016, as well
as court decisions and scholarly books when possible. We check whether factual evidence
of wrongdoing or otherwise reputationally damaging conduct was conclusively verified
at a later time. If so, we check whether the evidence involved the president directly or
close family members or political collaborators chosen or appointed by the president or

26This corresponds to the first terms of five presidents: Jimmy Carter (1976-1980), Ronald Reagan (1980-
1984), George H. W. Bush (1988-1992), Bill Clinton (1992-1996), and George W. Bush (2000-2004). Each
president run for reelection and three (Reagan, Clinton, and Bush) served two full terms.

27Nyhan (2015) does not provide data on scandals involving the president-elect between Election Day
and the first week of January of the following year, but it contains data on scandals involving the president-
elect between the first week of January and the date of his inauguration: there are no such scandals.

28We omit from our sample the “GSA corruption” scandal during Jimmy Carter’s presidency as the
allegations, explicit and implicit, of the scandal, while involving the federal administration, did not involve
any of the member of Carter’s administration or their collaborators (if anything, as Carter run with the
promise to end corruption in the GSA, the scandal might have actually reinforced his position). In any case,
we check in Online Appendix A that our qualitative results are robust to the inclusion of this scandal.
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Figure 3: US presidential scandals and weeks to election. Distribution of real and fake
scandals.

(a) Whole term.
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his administration. We code these scandals as real. For the remaining scandals, we check
whether a case for libel was successful or all political actors linked to the scandal were
cleared of wrongdoings. We code these scandals as fake. The only scandal we were not
able to code by this procedure is the “Banca Nazionale del Lavoro” scandal (also known
as “Iraq-gate”). We code this scandal as real, but we check in Online Appendix A that all
our qualitative results are robust to coding it as fake. In Online Appendix A, we report
the complete list of scandals and a summary motivation of our coding decisions.

Figure 3 shows the empirical distributions of the first mention of real and fake pres-
idential scandals in the Washington Post as a function of weeks to election. Although we
do not observe scandals released after the election (t = T + 1 in our model) and cannot
pinpoint the date at which the campaign begins (t = 1 in our model), Corollary 1 implies
that fake scandals are released later than real scandals conditional on any given time in-
terval. The left panel covers the whole presidential term; the right panel focuses on the
election campaign period only, which we identify with the last 60 weeks before the elec-
tion. Both figures suggest that fake scandals are released later than real scandals. Because
of the small sample size (only 15 scandals), formal tests have low power. Nevertheless,
using the Dardanoni and Forcina (1998) test for the likelihood ratio order (which implies
first order stochastic dominance), we almost reject the hypothesis that the two distribu-
tions are equal in favor of the alternative hypothesis that fake scandals are released later
(p-value 0.114); we cannot reject the hypothesis that fake scandals are released later in
favor of the unrestricted hypothesis at all standard statistical significance levels (p-value:
0.834).29

29We discuss this test in greater detail in the context of the next application. For this application, we use
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Figure 4: Distribution of real and fake scandals.
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Our Poisson model offers a novel perspective over the October surprise concentra-
tion of scandals towards the end of the presidential election campaign (see Figure 1). In
equilibrium, real scandals are released as they are discovered by the media. Unless real
scandals are more likely to be discovered towards the end of the first term of a president,
then we should not expect their release to be concentrated towards the end of the cam-
paign (see pG (t) in Figure 2a). Instead, fake scandals are strategically delayed, and so
they should be concentrated towards the end of the first term of the president and just
before the election (see pB (t) in Figure 2a). In other words, our model predicts that the
October surprise effect is driven by fake scandals. In contrast, were the October surprise
effect driven by the desire to release scandals when they are most salient, then the timing
of release of real and fake scandals would be similar. Figure 4 is a replica of Figure 1, but
with scandals coded as real and fake. Fake scandals are concentrated close to the election,
with a majority of them released in the last quarter before the election. In contrast, real
scandals appear to be scattered across the entire presidential term.

Our Poisson model also predicts how different parameters affect the release of a US
presidential scandal. We now illustrate how Nyhan’s (2015) empirical findings may be
interpreted using our model. Nyhan (2015) finds that scandals are more likely to appear
when the president’s opposition approval rate is low. In our model, the approval rate is

k = 3 equiprobable time intervals. For the election campaign period only (10 scandals), the p-values are
0.003 and 0.839, respectively.
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most naturally captured by the prior belief 1− π (the belief that the president is fit to run
the country). In our Poisson model, a higher π has a direct and an indirect effect on the
probability of release of a scandal. On the one hand, a higher π means that the president
is more likely to be involved in a real scandal, thus directly increasing the probability that
such a scandal is released. On the other hand, the opposition optimally resorts to fake
scandals more when the president is so popular that only a scandal could prevent the
president’s reelection. Therefore, a higher π reduces the incentive for the opposition to
release fake scandals, indirectly reducing the probability that a scandal is released. We can
then interpret Nyhan’s finding as suggesting that the direct effect on average dominates
the indirect effect.

But the president’s opposition approval rate also measures opposition voters’ hostility
towards the president, which might be captured by the rate λ at which voters learn that a
scandal is fake.30 Indeed, Nyhan conjectures that when opposition voters are more hostile
to the president, then they are “supportive of scandal allegations against the president
and less sensitive to the evidentiary basis for these claims [and] opposition elites will
be more likely to pursue scandal allegations” (p. 6). Consistently, in our Poisson model,
when voters take more time to tell real and fake scandals apart, the opposition optimally
resorts to fake scandals.

Nyhan (2015) also finds that fewer scandals involving the president are released when
the news agenda is more congested. Such media congestion may have the following
two effects. First, when the news agenda is congested, the opposition media has less
time to devote to investigate the president. In our Poisson model, this is captured by
a lower arrival rate α, which in turn reduces the probability that a scandal is released.
Second, when the news agenda is congested, public scrutiny of the scandal is slower
as the attention of media, politicians, and voters are captured by other events. In our
Poisson model, this is captured by a lower breakdown rate λ, which in turn increases the
probability that a scandal is released. We can interpret Nyhan’s finding as suggesting
that the media congestion effect through the arrival rate α dominates the effect through
the breakdown rate λ.31

30The rate of learning λ might also be related to the verifiability of information, which may depend on
the scandal’s type (e.g., infidelity vs. corruption).

31Another possible explanation (not captured by our model) for Nyhan’s finding is that media organi-
zations strategically avoid releasing scandals when voters’ attention is captured by other media events and
scandals may be less effective (see Durante and Zhuravskaya, 2017).
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5.2 Initial Public Offerings

We now apply our model to the timing of Initial Public Offerings (IPOs). Sender is a firm
that needs liquidity in a particular time frame, and this time frame is private information
of the firm. The need for liquidity could arise from the desire to grow the firm, expand
into new products or markets, or because of operating expenses outstripping revenues.
It could also arise because of investors having so-called “drag-along rights,” where they
can force founders and other shareholders to vote in favor of a liquidity event.

When announcing the IPO, firms have private information regarding their prospec-
tive long-run performance. Good firms expect their business to out-perform the market’s
prior expectation; bad firms expect their business to under-perform the market’s prior ex-
pectation. After a firm announces an IPO, the market scrutinizes the firm’s prospectus,
and learns about the firm’s prospective performance. The initial trade closing price of the
stock is determined by the market’s posterior belief at the initial trade date. Therefore, af-
ter the initial trade date, as the firms’ potential is gradually revealed to the market, good
firms’ stocks out-perform bad firms’ stocks.

Since the true time frame is private information, the firm can “pretend” to need liq-
uidity faster than it actually does, and it has significant control over the time gap between
the announcement of the IPO and the initial trade date. A shorter time gap decreases the
amount of scrutiny the firm undergoes before going public, but also reduces credibility.
Therefore, our model predicts that bad firms should choose a shorter time gap than good
firms.32

We explore this prediction using data on US IPOs from 1983 to 2016. For each IPO,
we record the time gap and calculate the cumulative return of the stock, starting from the
initial trade date. We measure the stock’s performance as its return relative to the market
return over the same period. Following Loughran and Ritter (1995), we evaluate IPOs’
long-run performance y ∈ {3, 5} years after the initial trade date. For each value of y, we
code as good (bad) those IPOs that performed above (below) market.33

32One way to map this application into our model is as follows. Suppose that a firm learns at date t` that
it needs liquidity in a time frame ∆F, meaning that the latest possible initial trade date is t`+∆F. Both t` and
∆F are privately known by the firm. Date t` is drawn according to the (improper) uniform distribution on
the set of integers Z. The time frame is ∆F ≡ T− t, where t has a distribution F on {1, . . . , T + 1}. The firm
chooses a time gap ∆G ≡ T − τ subject to τ ∈ {t, . . . , T + 1}, meaning that it announces an IPO at a date
ta ∈ {t`, . . . , t` + (∆F − ∆G)} with the initial trade date at ta + ∆G ≤ t` + ∆F. Announcing an IPO at date
ta with the initial trade date at ta − 1 means that the firm accesses liquidity through other channels than an
IPO. With this mapping, all our results hold exactly with PG and PB being the distributions of τ = T − ∆G
for good and bad firms, respectively.

33Our model predicts that the time gap should not affect expected excess returns, because the price at
the initial trade date takes into account the information contained in the time gap. Therefore, we cannot
take a standard approach of regressing excess returns on the time gap to evaluate the main prediction of
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Figure 5: US IPOs and time gap. Distributions for good and bad IPOs.
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Figure 5 shows the empirical distributions of time gap for good and bad IPOs evaluated
at 3 and 5 years after the initial trade date. Both figures suggest that bad firms choose a
shorter time gap in the first order stochastic dominance sense, but with the effect being
more clearly visible after 5 years. This pattern is consistent with our idea that firms’
private information is only gradually (and slowly) revealed to the market once the period
of intense scrutiny of the IPO ends.

Our main prediction in Corollary 1 is that the distribution of time gap for good IPOs
dominates the distribution of time gap for bad IPOs in the likelihood ratio order.34 We
evaluate this prediction using an approach developed by Dardanoni and Forcina (1998).
This approach tests (i) the hypothesis H0 that the distributions are identical against the
alternative H1 that the distributions are ordered in the likelihood ratio order; as well as
(ii) the hypothesis H1 against an unrestricted alternative H2. The hypothesis of interest
H1 is accepted if the first test rejects H0 and the second test fails to reject H1. Following
Roosen and Hennessy (2004), we partition the variable time gap into k intervals that are
equiprobable according to the empirical distribution of time gap. We report in Table 1 the
p-values of the two statistics for the case of k = 7.

For both 3 and 5 years performance, we reject the hypothesis H0 in favor of H1 at the
1 percent significance level. Furthermore, for 5 years performance, we cannot reject the
hypothesis H1 in favor of H2 at all standard significance levels. In Online Appendix B we
give some further details about our data and the test, and we explore how the results of

our model that bad firms choose a shorter time gap.
34As we discuss in Section 3.2.3, bad Sender may pull the arm later than good Sender simply because she

receives it later than good Sender (not because she strategically delays). Therefore, we do not empirically
identify whether bad firms choose a shorter time gap for a strategic reason.
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Table 1: Dardanoni and Forcina test for likelihood ratio order (p-values).

3 years 5 years

H0 vs H1 0.001 0.000
H1 vs H2 0.000 0.361

obs. 529 403

the test may change under alternative specifications.

6 Concluding Remarks

We have analyzed a model in which the strategic timing of information release is driven
by the tradeoff between credibility and scrutiny. The analysis yields novel predictions
about the dynamics of information release. We also offered supporting evidence for these
predictions using data on the timing of US presidential scandals and the announcement
of initial public offerings.

Our model can also be used to deliver normative implications for the design of a vari-
ety of institutions. In the context of election campaigns, our results could be employed to
evaluate laws that limit the period in which candidates can announce new policies in their
platforms or media can cover candidates. For example, more than a third of the world’s
countries mandate a blackout period before elections: a ban on political campaigns or, in
some cases, on any mention of a candidate’s name, for one or more days immediately
preceding elections.35

The framework we have developed has further potential applications. For instance,
the relationship between a firm’s management team and its board of directors often ex-
hibits the core features of our model: management has private information and poten-
tially different preferences than the board; the board’s view about a project or investment
determines whether it is undertaken; and management can provide more or less time to
the board in evaluating the project or investment. The comparative statics of our model
may speak to how this aspect of the management-board relationship may vary across
industries and countries. Similarly, in various legal settings an interested party with pri-
vate information may come forward sooner or later, notwithstanding an essentially fixed
deadline for the legal decision-maker (due to institutional or resource constraints). A nat-

35The 1992 US Supreme Court sentence Burson v. Freeman, 504 US 191, forbids such practices as violations
of freedom of speech.
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ural example is witnesses in a criminal investigation, but the same issues often arise in
civil matters or even parliamentary inquiries.

In each of these applications, the credibility-scrutiny tradeoff plays an important role,
and we hope our model, characterization of equilibrium, and comparative statics will
serve as a useful framework for studying them in the future.

Appendix

A Statistical Properties

Proof of Lemma 1. Follows from Lemma 1′.

Proof of Lemma 1′. Part 1. By Blackwell (1953), Assumption 1 with τ′ = T + 1 implies
that pulling the arm at τ is the same as releasing an informative signal y. By Bayes’s rule,
posterior s is given by:

s =
mq (y | G)

mq (y | G) + (1−m) q (y | B)

where q (y | θ) is the density of y given θ. (If L is discrete, then q (y | θ) is the discrete
density of y given θ.) Therefore,

q (y | G)

q (y | B)
=

1−m
m

s
1− s

. (10)

Writing (10) for interim beliefs m and m′, we obtain the following relation for correspond-
ing posterior beliefs s and s′:

1−m′

m′
s′

1− s′
=

1−m
m

s
1− s

,

which implies that

s′ =
m′s
m

m′s
m + (1−m′)(1−s)

1−m

(11)

Therefore, s′ > s for m′ > m; so part 1 follows.
Part 2. By Blackwell (1953), Assumption 1 implies that pulling the arm at τ is the

same as pulling the arm at τ′ and then releasing an additional informative signal y with
conditional density q (y | θ). Part 2 holds because for any strictly increasing concave vB,
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we have

E [vB (s) | τ, m, B] = E

[
vB

(
sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, m, B

]
= E

[
E

[
vB

(
sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, s, B

]
| τ′, m, B

]
≤ E

[
vB

(
E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, s, B

])
| τ′, m, B

]

< E

vB

 sE
[

q(y|G)
q(y|B) | τ′, s, B

]
sE
[

q(y|G)
q(y|B) | τ′, s, B

]
+ (1− s)

 | τ′, m, B


= E

[
vB (s) | τ′, m, B

]
,

where the first line holds by Bayes’s rule, the second by the law of iterated expectations,
the third by Jensen’s inequality applied to concave vB, the fourth by strict monotonicity
of vB and Jensen’s inequality applied to function sz/ (sz + 1− s) which is strictly concave
in z, and the last by definition of expectations.

Part 3. Analogously to Part 2, Part 3 holds because for any strictly increasing convex
vG, we have

E [vG (s) | τ, m, G] = E

[
vG

(
sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, m, G

]
= E

[
E

[
vG

(
sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, s, G

]
| τ′, m, G

]
≥ E

[
vG

(
E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, s, G

])
| τ′, m, G

]

> E

vG

 s

s + (1− s)E
[

q(y|B)
q(y|G)

| τ′, s, G
]
 | τ′, m, G


= E

[
vG (s) | τ′, m, G

]
.

Proof of Lemma 1′′. The proof of part 1 is the same as in Lemma 1′. As noted before,
pulling the arm at τ is the same as pulling the arm at τ′ and then releasing an addi-
tional informative signal y with conditional density q (y | θ). Let sσ be the probability
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that Sender is good given that Receiver’s posterior is s and Sender’s signal is σ. By (11),

sσ =
σs
π

σs
m + (1−σ)(1−s)

1−m

.

We have,

E [s | τ, m, σ] = E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, m, σ

]
= E

[
E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, s, σ

]
| τ′, m, σ

]

= E

 sσE
[

sq(y|G)
sq(y|G)+(1−s)q(y|B) | τ′, s, G

]
+

+ (1− sσ)E
[

sq(y|G)
sq(y|G)+(1−s)q(y|B) | τ′, s, B

] ∣∣∣∣∣∣ τ′, m, σ


= E

 sσE
[

sq(y|G)
sq(y|G)+(1−s)q(y|B) | τ′, s, G

]
+

+ (1− sσ)E
[

sq(y|B)
sq(y|G)+(1−s)q(y|B) | τ′, s, G

] ∣∣∣∣∣∣ τ′, m, σ


= E

sE

 sσ + (1− sσ)
q(y|B)
q(y|G)

s + (1− s) q(y|B)
q(y|G)

| τ′, s, G

 | τ′, m, σ


≷ E

[
s | τ′, m, σ

]
whenever sσ ≷ s,

where the last line holds by Jensen’s inequality applied to function (sσ + (1− sσ) z) / (s + (1− s) z),
which is strictly convex (concave) in z whenever sσ > s (sσ < s). Because σG > π > σB,
we have sσG > s > sσB , so parts 2 and 3 follow.

B Benchmark Model

To facilitate our discussion in Section 3.2, we prove our results under more general as-
sumptions than in our benchmark model. First, we assume that vG (s) is continuous,
strictly increasing, and (weakly) convex, and vB (s) is continuous, strictly increasing, and
(weakly) concave. Second, we assume that the arm arrives at a random time according to
distributions FG = F for good Sender and FB for bad Sender, where FB (t) ≥ FG (t) for all
t.
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Proof of Lemma 2. Part 1. Suppose, on the contrary, that µ (τ) ≤ µ (τ′). Then

ˆ
vB (s) dHB (s|τ, µ (τ)) <

ˆ
vB (s) dHB

(
s|τ′, µ (τ)

)
≤
ˆ

vB (s) dHB
(
s|τ′, µ

(
τ′
))

,

where the first inequality holds by part 2 of Lemma 1′ and the second by part 1 of Lemma
1′. Therefore, bad Sender strictly prefers to pull the arm at τ′ than at τ. A contradiction.

Good Sender strictly prefers to pull the arm at τ because

ˆ
vG (s) dHG (s|τ, µ (τ)) >

ˆ
vG (s) dHG

(
s|τ′, µ (τ)

)
>

ˆ
vG (s) dHG

(
s|τ′, µ

(
τ′
))

,

where the first inequality holds by part 3 of Lemma 1′ and the second by µ (τ) > µ (τ′)

and part 1 of Lemma 1′.
Part 2. By part 1 of this lemma applied to τ and τ′ = T + 1, it suffices to show that

µ (τ) , µ (T + 1) ∈ (0, 1) for all τ in the support of PB. First, by Bayes’s rule, τ being
in the support of PB implies µ (τ) < 1. Second, by Bayes’s rule, FG (T) < 1 implies
µ (T + 1) > 0. Third, µ (T + 1) > 0 implies µ (τ) > 0, otherwise τ could not be in the
support of PB because vB (µ (T + 1)) > vB (0) = E [vB (s) | τ, 0, B]. Finally, µ (τ) < 1
implies µ (T + 1) < 1, otherwise τ could not be in the support of PB because vB (1) >

E [vB (s) | τ, µ (τ) , B].

Proof of Lemma 3. By part 2 of Lemma 2, each t′ in the support of PB is also in the sup-
port of PG. We show that each t′ in the support of PG is also in the support of PB by
contradiction. Suppose that there exists t′ in the support of PG but not in the support of
PB. Then, by Bayes’s rule µ (t′) = 1; so bad Sender who receives the arm at t ≤ t′ gets
the highest possible equilibrium payoff vB (1), because she can pull the arm at time t′ and
get payoff vB (1) (recall that, for all t, the support of H (.|t, π) does not contain s = 0 by
part (ii) of Assumption (1)). Because bad Sender receives the arm at or before t′ with a
positive probability (recall that, for all t, FB (t) ≥ FG (t) > 0 by assumption), there ex-
ists time τ at which bad Sender pulls the arm with a positive probability and gets payoff
vB (1). But then µ (τ) = 1, contradicting that bad Sender pulls the arm at τ with a positive
probability.

Suppose, on the contrary, that there exists τ such that PG (τ) > 0 and PB (τ) ≥ PG (τ).
Because Pθ (τ) = ∑τ

t=1 (Pθ (t)− Pθ (t− 1)), there exists τ′ ≤ τ in the support of PB
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such that PB (τ
′) − PB (τ

′ − 1) ≥ PG (τ′) − PG (τ′ − 1). Similarly, because 1− Pθ (τ) =

∑T+1
t=τ+1 (Pθ (t)− Pθ (t− 1)) and 1− PG (τ) > 0 (recall that PG (T) ≤ FG (T) < 1), there ex-

ists τ′′ > τ in the support of PG such that PG (τ′′)− PG (τ′′ − 1) ≥ PB (τ
′′)− PB (τ

′′ − 1).
By Bayes’s rule,

µ
(
τ′
)

=
π (PG (τ′)− PG (τ′ − 1))

π (PG (τ′)− PG (τ′ − 1)) + (1− π) (PB (τ′)− PB (τ′ − 1))
≤ π

≤ π (PG (τ′′)− PG (τ′′ − 1))
π (PG (τ′′)− PG (τ′′ − 1)) + (1− π) (PB (τ′′)− PB (τ′′ − 1))

= µ
(
τ′′
)

.

Therefore, by Lemma 2, bad Sender strictly prefers to pull the arm at τ′′ than at τ′, con-
tradicting that τ′ is in the support of PB.

Proof of Lemma 4. By Lemma 3, PG and PB have the same supports and therefore µ (τ) ∈
(0, 1). Let the support of PG be {τ1, ..., τn}. Notice that τn = T + 1 because PG (T) ≤
FG (T) < 1. Since τn−1 is in the support of PB and

PB (τn−1) < PG (τn−1) = FG (τn−1) ≤ FB (τn−1) ,

where the first inequality holds by Lemma 3, the equality by part 2 of Lemma 2, and
the last inequality by assumption FB (t) ≥ FG (t). Therefore, bad Sender who receives the
arm at τn−1 must be indifferent between pulling the arm at τn−1 or at τn. Analogously, bad
Sender who receives the arm at τn−k−1 must be indifferent between pulling it at τn−k−1

and at some τ ∈ {τn−k, . . . , τn}. Thus, by mathematical induction on k, bad Sender is
indifferent between pulling the arm at any τ in the support of PG and at T + 1, which
proves (2).

By Bayes’s rule, for all τ in the support of PG,

1− π

π
(PB (τ)− PB (τ − 1)) =

1− µ (τ)

µ (τ)
(PG (τ)− PG (τ − 1)) . (12)

Summing up over τ yields (3).

Proof of Proposition 1. Part 1. We first show that, for each T ⊆ {1, . . . , T + 1} with T +

1 ∈ T and each τ ∈ T , there exist unique PG(τ), PB(τ), and µ (τ) given by part 1 of
this proposition. It suffices to show that there exists a unique {µ (τ)}τ∈T ∈ [0, 1]|T | that
solves (2) and (3). Using (11) with m = π and m′ = µ (τ), the left hand side of (2) can be
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rewritten as

VB (µ (τ)) ≡
ˆ

vB

(
µ(τ)s

π
µ(τ)s

π + (1−µ(τ))(1−s)
1−π

)
dHB (s|τ, π) .

Because vB is continuous and strictly increasing, VB is also continuous and strictly increas-
ing. Furthermore, VB (0) = vB (0) and VB (1) = vB (1). Therefore, for all µ (T + 1) ∈ [0, 1]
and all τ ∈ T , there exists a unique µ (τ) that solves (2). Moreover, for all τ ∈ T , µ (τ) is
continuous and strictly increasing in µ (T + 1), is equal to 0 if µ (T + 1) = 0, and is equal
to 1 if µ (T + 1) = 1. The left hand side of (3) is continuous and strictly decreasing in µ (τ)

for all τ ∈ T . Moreover, the left hand side of (3) is 0 when µ (τ) = 1 for all τ ∈ T , and it
approaches infinity when µ (τ) approaches 0 for all τ ∈ T . Therefore, substituting each
µ(τ) in (3) with a function of µ (T + 1) obtained from (2), we conclude that there exists a
unique µ (T + 1) that solves (3).

We now construct an equilibrium for each T ⊆ {1, . . . , T + 1} with T + 1 ∈ T . Let
PG(τ) and PB(τ) be given by part 1 of this proposition for all τ ∈ {1, . . . , T + 1}. Let
µ (τ) be given by part 1 of this proposition for all τ ∈ T and µ (τ) = 0 otherwise. Notice
that, so constructed, PG, PB, and µ exist and are unique. PG is clearly a distribution. PB

is also a distribution, because PB (τ) increases with τ by (4) and PB (T + 1) = 1 by (3)
and (4). Furthermore, µ is a consistent belief because (12) holds for all τ ∈ T by (4).
It remains to show that there exists an optimal strategy for Sender such that good and
bad Sender’s distributions of pulling time are given by PG and PB. First, both good and
bad Sender strictly prefer not to pull the arm at any time τ /∈ T , because, by part (ii)
of Assumption (1), pulling the arm at τ gives Sender a payoff of vθ (0) < vθ (µ (T + 1)).
Second, by (2), pulling the arm at any time τ ∈ T gives bad Sender the same expected
payoff vθ (µ (T + 1)). Last, by part 1 of Lemma 2, good Sender strictly prefers to pull the
arm at time τ ∈ T than at any other time τ′ > τ.

Finally, in any equilibrium, PG and PB have the same supports by Lemma 3. Moreover,
for all τ in the support of PG, PG (τ) = F (τ) by part 2 of Lemma 2, PB (τ) satisfies (4) by
(12), µ (τ) ∈ (0, 1) by Lemma 3, and µ (τ) satisfies (3) and (4) by Lemma 4.

Part 2. First, we notice that, by part 1 of Proposition 1, there exists an equilibrium
with T = {1, . . . , T + 1}. In this equilibrium, there are no out of equilibrium events and
therefore it is divine.

Adopting Cho and Kreps (1987)’s definition to our setting (see e.g., Maskin and Tirole,
1992), we say that an equilibrium is divine if µ (τ) = 1 for any τ /∈ supp (PG) at which
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condition D1 holds. D1 holds at τ if for all m ∈ [0, 1] that satisfy

ˆ
vB (s) dHB (s|τ, m) ≥ max

t∈supp(PG),t>τ

ˆ
vB (s) dHB (s|t, µ (t)) (13)

the following inequality holds:

ˆ
vG (s) dHG (s|τ, m) > max

t∈supp(PG),t>τ

ˆ
vG (s) dHG (s|t, µ (t)) . (14)

Suppose, on the contrary, that there exists a divine equilibrium in which PG (τ) <

FG (τ) for some τ ∈ {1, . . . , T}. By part 1 of Proposition 1, τ /∈ supp (PG). Let t∗ denote t
that maximizes the right hand side of (14). By Lemma 3, µ (t∗) < 1 , and, by Lemma 4, t∗

maximizes the right hand side of (13). Therefore, by part 1 of Lemma 2, D1 holds at τ; so
µ (τ) = 1. But then τ /∈ supp (PG) cannot hold, because

ˆ
vG (s) dHG (s|τ, 1) = vG (1) > max

t∈supp(PG)

ˆ
vG (s) dHG (s|t, µ (t)) .

Proof of Corollary 2. By Lemma 4 and part 2 of Proposition 1, bad Sender is indifferent
between pulling the arm at any time before the deadline and not pulling the arm at all.
Then, by Lemma 2, µ (τ − 1) > µ (τ) for all τ.

Using (4) with PG = FG, we have that for all τ < T,

1− µ̃ (τ)

µ̃ (τ)
=

1− π

π

1− PB (τ)

1− PG (τ)

=
∑T+1

t=τ+1
1−µ(t)

µ(t) (FG (t)− FG (t− 1))

1− FG (τ)
(15)

= EF

[
1− µ (t)

µ (t)
| t ≥ τ + 1

]
.

Since µ (τ − 1) > µ (τ) for all τ, (15) implies that µ̃ (τ − 1) > µ̃ (τ) and µ (τ) > µ̃ (τ − 1)
for all τ.

Proof of Corollary 1. Using (4) with PG = FG, we have

1− µ (τ)

µ (τ)
=

1− π

π

PB (τ)− PB (τ − 1)
PG (τ)− PG (τ − 1)

.
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To complete the proof, notice that, by Corollary 2, µ (τ) > µ (τ′) whenever τ < τ′.

Proof of Lemma 2′. Given Receiver’s interim belief m and pulling times τ and τ′, we
write H and H′ for distributions H (. | τ, m) and H (. | τ′, m) of Receiver’s posterior belief
s from Receiver’s perspective, and we write Hθ and H′θ for distributions Hθ (. | τ, m) and
Hθ (. | τ′, m) of Receiver’s posterior belief s from type-θ Sender’s perspective.

For any interim belief m ∈ (0, 1) and pulling times τ, τ′, by Bayes’s rule, we have

dH (s) = mdHG (s) + (1−m) dHB (s) ,

s =
mdHG (s)

mdHG (s) + (1−m) dHB (s)
,

so that dHG (s) = s
m dH (s) and dHB (s) = 1−s

1−m dH (s). Likewise, dH′G (s) = s
m dH′ (s) and

dH′B (s) =
1−s
1−m dH′ (s).

For any pulling time τ and interim beliefs m, m′ ∈ (0, 1), each posterior belief s under
interim belief m transforms into the posterior belief s′ given by (11) under interim belief
m′.

Let m = µ (τ) and m′ = µ (τ′). Bad Sender weakly prefers to pull the arm at τ than at
τ′ if and only if

ˆ 1

0
vB (s) dHB (s) ≥

ˆ 1

0
vB

(
m′s
m

m′s
m + (1−m′)(1−s)

1−m

)
dH′B (s) ,

which is equivalent to

ˆ 1

0
vB (s) (1− s) dH (s) ≥

ˆ 1

0
vB

(
m′s
m

m′s
m + (1−m′)(1−s)

1−m

)
(1− s) dH′ (s) . (16)

Similarly, good Sender strictly prefers to pull the arm at τ than at τ′ if and only if

ˆ 1

0
vG (s) sdH (s) >

ˆ 1

0
vG

(
m′s
m

m′s
m + (1−m′)(1−s)

1−m

)
sdH′ (s) . (17)

Because s and s′ are in (0, 1), and s′ is strictly increasing in s, for any r ∈ (0, 1), we
have that s′ > r if and only if s > r′ for some r′ ∈ (0, 1), which depends on m and m′.
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Thus, for vθ given by (5), the inequalities (16) and (17) can be rewritten as

ˆ 1

r
(1− s) dH (s) ≥

ˆ 1

r′
(1− s) dH′ (s) , (18)

ˆ 1

r
sdH (s) >

ˆ 1

r′
sdH′ (s) , (19)

where
´ 1

r and
´ 1

r′ stand for the Lebesgue integrals over the sets (r, 1] and (r′, 1]. Notice
also that we are using a selection from Receiver’s best response correspondence for which
v (r) = 0. The proof goes through for other selections, after adding appropriate terms on
both sides of (18) and (19). Integrating by parts, we can rewrite (18) and (19) as

− (1− r) H (r) +
ˆ 1

r
H (s) ds ≥ −

(
1− r′

)
H′
(
r′
)
+

ˆ 1

r′
H′ (s) ds, (20)

−rH (r)−
ˆ 1

r
H (s) ds > −r′H′

(
r′
)
−
ˆ 1

r′
H′ (s) ds, (21)

Suppose that (20) and (6) hold and let us show that (21) holds. We have H′ (r′) > H (r),
because

(1− r)
(

H′
(
r′
)
− H (r)

)
=

(
1− r′

)
H′
(
r′
)
+
(
r′ − r

)
H′
(
r′
)
− (1− r) H (r)

≥
(
1− r′

)
H′
(
r′
)
+

ˆ r′

r
H′ (s) ds− (1− r) H (r)

≥
ˆ 1

r
H′ (s) ds−

ˆ 1

r
H (s) ds > 0,

where the equality holds by rearrangement, the first inequality holds by monotonicity of
H, the second by (20), and the last by (6). The inequality (21) then holds because

r′H′
(
r′
)
− rH (r) +

ˆ 1

r′
H′ (s) ds−

ˆ 1

r
H (s) ds > r′H′

(
r′
)
− rH (r)−

ˆ r′

r
H′ (s) ds

≥ r′H′
(
r′
)
− rH (r)− H′

(
r′
) (

r′ − r
)

= r
(

H′
(
r′
)
− H (r)

)
> 0,

where the first inequality holds by (6), the second by monotonicity of H, and the last by
the established inequality H′ (r′) > H (r).
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C Poisson Model

Proof of Proposition 6. For π: Differentiating µ (T) in Proposition 2 with respect to π,
we have

dµ (T)
dπ

=

{
1

π2 µ (T)2 if π < π̄,
eαT

π2 µ (T)2+ α
λ otherwise,

}
> 0.

For λ: First, when π < π̄, dµ(T)
dλ < 0 since e−(α+λ)T > 1− (α + λ) T for all α, λ, T > 0.

Second, when π > π̄,

dµ (T)
dλ

=
d

dλ
e−

λ
α+λ ln(1+φ(λ)),

φ ≡ α + λ

λ

1− π

π
eαT > 0.

Thus, dµ(T)
dλ < 0, because

d
dλ

λ

α + λ
ln (1 + φ) =

α

α + λ

[
ln (1 + φ)

α + λ
− 1

λ

1− π

π

1
1 + φ

]
> 0

where the inequality follows from (1 + φ) ln (1 + φ) > φ.
For α: First, when π < π̄,

dµ (T)
dα

= − (µ (T))2 χ

(α + λ)2 < 0,

χ ≡ λ
{

eλT − [1 + (α + λ) T] e−αT
}
> 0,

where the last passage follows from e(α+λ)T > 1 + (α + λ) T for all α, λ, T > 0. Second,
when π ≥ π̄, by log-differentiation,

dµ (T)
dα

= µ (T)
λ

α + λ

[
ln (1 + φ)

α + λ
− 1

1 + φ

dφ

dα

]
.

Thus,
dµ (T)

dα
< 0 ⇐⇒ (1 + φ) ln (1 + φ)

φ
< 1 + T (α + λ) . (22)

For π = π̄, φ = e(α+λ)T − 1 > 0; so

dµ (T)
dα

< 0 ⇐⇒ ln (1 + φ) < φ,
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which is true for all φ > 0. Then dµ(T)
dα < 0 for π ≥ π̄ follows because φ < e(α+λ)T − 1 for

π > π̄ and the left hand side of (22) increases with φ for φ > 0.

Proof of Proposition 3. Part 1. Recall that (i) Sender’s payoff equals Receiver’s posterior
belief about Sender at t = T and (ii) in equilibrium, bad Sender (weakly) prefers not to
pull the arm at all than pulling it at any time t ∈ [0, T]. Therefore, bad Sender’s expected
payoff equals Receiver’s belief about Sender at t = T if the arm has not been pulled:

E [vB] = µ (T) . (23)

Part 1 then follows from Proposition 6.
Part 2. By the law of iterated expectations,

E [s] = πE [vG] + (1− π)E [vB] = π

⇒ E [vG] = 1− 1− π

π
µ (T) (24)

where s is Receiver’s posterior belief about Sender at t = T and we use (23) in the last
passage. Thus, good Sender’s expected payoff increases with α and λ by Proposition 6.
Finally, it is easy to see that E [vG] increases in π after substituting µ (T) in E [vG].

Part 3. We shall show that in the divine equilibrium

E [u] =
(1− π) (1− µ (T))

2
. (25)

Part 3 then follows from Proposition 6.
Since E [s] = π, by (1) and (24), it is sufficient to prove that E

[
s2] = πE [vG]. We

divide the proof in two cases: π ≤ π̄ and π > π̄. If π ≤ π̄, Receiver’s expected payoff is
given by the sum of four terms: (i) Sender is good and the arm does not arrive; (ii) Sender
is good and the arm arrives; (iii) Sender is bad and she does not pull the arm; and (iv)
Sender is bad and she pulls the arm. Thus,

E
[
s2
]

= πe−αT (µ (T))2

+π

ˆ T

0

(
eλ(T−t)µ (T)

)2
αe−αtdt

+ (1− π) (1− PB (T)) (µ (T))2

+ (1− π)

ˆ T

0
e−λ(T−t)

(
eλ(T−t)µ (T)

)2 π

1− π

(
1− µ (t)

µ (t)

)
αe−αtdt.
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Solving all integrals and rearranging all common terms we get

E
[
s2
]

= πE [vG] .

If π > π̄, Receiver’s expected payoff is given by the sum of five terms: (i) Sender is good
and the arm does not arrive; (ii) Sender is good and the arm arrives before t̄; (iii) Sender
is good and the arm arrives between t̄ and T; (iv) Sender is bad and she does not pull the
arm; (v) Sender is bad and she pulls the arm. Thus,

E
[
s2
]

= πe−αT (µ (T))2

+π
(

1− e−αt̄
)

+π

ˆ T

t̄

(
eλ(T−t)µ (T)

)2
αe−αtdt +

+ (1− π) (1− PB (T)) (µ (T))2

+ (1− π)

ˆ T

t̄
e−λ(T−t)

(
eλ(T−t)µ (T)

)2 π

1− π

(
1− µ (t)

µ (t)

)
αe−αtdt.

Solving all integrals and rearranging all common terms we again get

E
[
s2
]

= πE [vG] .

Proof of Proposition 4. For π: Differentiating PB (T) in (7) with respect to π, we have

dPB (T)
dπ

=
e−αT

µ (T) (1− π)
×
[

π

µ (T)
dµ (T)

dπ
− 1− µ (T)

1− π

]

=
e−αT

µ (T) (1− π)
×


[

µ(T)
π − 1−µ(T)

1−π

]
if π < π̄,[

eαT µ(T)1+ α
λ

π − 1−µ(T)
1−π

]
otherwise.


First, when π < π̄, dPB(T)

dπ < 0 because µ (T) < π. Second, whenπ ≥ π̄, dPB(T)
dπ < 0 if and

only if

1 +
α

α + λ
φ > (1 + φ)

α
α+λ ,

φ ≡ α + λ

λ

1− π

π
eαT > 0.
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Thus, dPB(T)
dπ < 0, because 1 + xφ > (1 + φ)x for all φ > 0 and x ∈ (0, 1).

For λ: Differentiating PB (T) in (7) with respect to λ, we have

dPB (T)
dλ

=
π

1− π

e−αT

µ (T)2
dµ (T)

dλ
< 0,

where the inequality follows from Proposition 6.
For α: Without loss of generality we can set T = 1. Differentiating PB (T) in (7) with

respect to α, we have

dPB (T)
dα

=
π

1− π
e−α

[
1− µ (T)

µ (T)
+

1

(µ (T))2
dµ (T)

dα

]
.

First, when π < π̄,

1− π

π
e2α dPB (T)

dα
=

(
1
π
− 2
)

eα +
(α (α + λ)− λ) eα+λ + λ (1 + 2 (α + λ))

(α + λ)2

>

(
1
π̄
− 2
)
+

(α (α + λ)− λ) eα+λ + λ (1 + 2 (α + λ))

(α + λ)2

=
1

(α + λ)2

(
λ (1 + (α + λ)) +

(
(α + λ)2 − λ

)
e(α+λ) − (α + λ)2 eα

)
=

∞

∑
k=3

[
(α + λ)k

(k− 2)!
− λ

(α + λ)k−1

(k− 1)!
− (α + λ)2 αk−2

(k− 2)!

]
≡

∞

∑
k=3

ck > 0,

where the inequality holds because each term ck in the sum is positive:

ck =
(α + λ)2

(
(α + λ)k−2 − αk−2

)
(k− 2)!

− (α + λ)2 λ (α + λ)k−3

(k− 1)!

=
(α + λ)2 λ

(
∑k−3

n=0 (α + λ)k−3−n αn
)

(k− 2)!
− (α + λ)2 λ (α + λ)k−3

(k− 1)!

>
(α + λ)2 λ (α + λ)k−3

(k− 2)!
− (α + λ)2 λ (α + λ)k−3

(k− 1)!
> 0.

Second, when π ≥ π̄, dPB(T)
dα > 0 if and only if

1 + φ

φ

[
ln (1 + φ) +

(α + λ)2

λ

(
1− (1 + φ)−

α+λ
λ

)]
− 1− α− λ > 0
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φ ≡ α + λ

λ

1− π

π
eαT.

The left hand side increases with α, treating φ as a constant. Then the inequality holds
because it holds for α→ 0 :

1 + φ

φ

[
ln (1 + φ) + λ

(
1− (1 + φ)−1

)]
− 1− λ > 0

⇐⇒ 1 + φ

φ
ln (1 + φ) > 1.

Proof of Proposition 5. For λ: Differentiating P (T) in (9) with respect to λ, we have

dP (T)
dλ

= (1− π)
dPB (T)

dλ
< 0,

where the inequality follows from Proposition 4.
For α: Differentiating P (T) in (9) with respect to α, we have

dP (T)
dα

> (1− π)
dPB (T)

dα
> 0,

where the last inequality follows from Proposition 4.
For π: Differentiating P (T) in (9) with respect to π, we have

dP (T)
dπ

=
πe−αT

µ (T)2

(
dµ (T)

dπ
− µ (T)

π

)
.

We now show that
dP (T)

dπ
≥ 0 ⇐⇒ π ≥ αeαT

(α + λ) eαT − 1
.

First, when π < π̄, we have dP (T) /dπ < 0 because µ (T) < π and

dµ (T)
dπ

=
µ (T)2

π2 <
µ (T)

π
.

Second, when π ≥ π̄, we have dP (T) /dπ < 0 if and only if

dµ (T)
dπ

= eαT µ (T) 2+ α
λ

π2 <
µ (T)

π
.
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Substituting µ (T), we get that this inequality is equivalent to

π <
αeαT

αeαT + λ (eαT − 1)
.

It remains to show that
αeαT

αeαT + λ (eαT − 1)
> π̄.

Substituting π̄, we get that this inequality is equivalent to

e(α+λ)T − 1
α + λ

>
eαT − 1

α
,

which is satisfied because function (ex − 1) /x increases with x.

Proof of Proposition 7. First, for π < π̄, t̄ = 0. Second, for π ≥ π̄, t̄ increases with π and
decreases with α because µ (T) increases with π and decreasing with α. Furthermore,

dt̄
dλ

=
1

α + λ

(
1

α + λ
ln (1 + φ) +

α

λ2
1− π

π
eαT 1

1 + φ

)
> 0,

φ ≡ α + λ

λ

1− π

π
eαT.

Proof of Proposition 8. The density pB (t) is equal to 0 for t ≤ t̄ and is given by

pB (t) ≡
dPB (t)

dt
=

π

1− π

αe−αt
(

1− µ (T) eλ(T−t)
)

µ (T)

for t > t̄. Differentiating pB (t) with respect to t for t > t̄, we get

dpB (t)
dt

=
π

1− π

αe−αt

µ (T)

[
(α + λ) µ (T) eλ(T−t) − α

]
> 0

if and only if

t < T − 1
λ

ln
(

α

α + λ

1
µ (T)

)
.

We can therefore conclude that pB (t) is quasiconcave on the interval [t̄, T].
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Proof of Proposition 9. The density p (t) is given by

p (t) =

παe−αt if t < t̄

παe−αt + παe−αt 1−µ(T)eλ(T−t)

µ(T) if t ≥ t̄.

Obviously, for t ≤ t̄, p (t) is decreasing in t. For t > t̄, differentiating p (t) with respect to
t, we get

dp (t)
dt

= παe−αt
[
(α + λ) eλ(T−t) − α

1 + µ (T)
µ (T)

]
> 0

if and only if

t < T − 1
λ

ln
(

α

α + λ

1 + µ (T)
µ (T)

)
.

Proof of Proposition 10. The breakdown probability at t is given by

Q (t) ≡
(

1− e−λ(T−t)
)
[1− µ (t)] .

Notice that Q (t) is continuous in t because µ (t) is continuous in t. Also, Q (t) equals 0
for t ≤ t̄, is strictly positive for all t ∈ (t̄, T), and equals 0 for t = T. Substituting µ (t) and
differentiating Q (t) with respect to t for t ≥ t̄, we get

dQ (t)
dt

= −λ
e−λ(T−t) (1 + µ (T))− 2µ (T)[

1− µ (T)
(
1− eλ(T−t)

)]2 > 0

if and only if

t < T − 1
λ

ln
(

1 + µ (T)
2µ (T)

)
.
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