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1 Description of Data

We gather data on all original initial public offerings (IPOs) from the Thomson Reuters
SDC Platinum database, during 1983 to 2016, and match them with stocks in the Wharton
Research Data Service (WRDS). The initial total number of observations is 963. For each
IPO i, the SDC Platinum database reports launch datei and trade datei, which we use to
calculate time gapi = trade datei − launch datei. For 244 IPOs, the variable time gap is zero
and we drop these observation.1 We also drop 6 observations for which time gap is greater
than 365 days and 20 observations for which the WRDS price variable runs for less than
12 months. As a result, we remain with 693 observations with time gaps ranging from 1
to 353. The average time gap is 79.7 days, the median is 70, and the standard deviation is
52.5.

We use the WRDS price variable to calculate IPO returns, and we use Ken French
Data Library to calculate CRSP daily market returns. For each IPO i and year y ∈ {3, 5},
we calculate returny

i from the trade date closing price until the y-year anniversary of the
IPO. We then compare each returny

i with market returny
i calculated as the value-weight

return of all CRSP firms over the same period. We define the dummy variable goody
i =

1 if returny
i ≥ market returny

i and goody
i = 0 otherwise.

1We verified that, for the 10 most recent of these 244 IPOs, the actual launch date preceded trade date;
so it appears that the database replaces launch date with trade date when launch date value is missing. In
any case, we run our test on the whole sample including these 244 observations. Due to the large number
of observations for which time gap = 0, we can form only k ≤ 3 equiprobable intervals. So we run the test
with k = 3 equiprobable intervals, and the results are qualitatively similar to those in Table 1. In particular,
for both 3 and 5 years performance, we reject H0 in favor of H1 at the 1 percent significance and we cannot
reject H1 in favor of H2 at all standard significance levels. We also run the test with k = 7 intervals, out of
which only the last 6 are equiprobable, and the results are qualitatively the same to those in Table 1.
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2 The Test

We test our main prediction using an approach developed by Dardanoni and Forcina
(1998), comparing the distributions of time gap conditional on good = 1 and good = 0.
We now briefly summarize this approach. For a given number of intervals k, we express
the distributions as a two-way contingency table with ordered margins. Dardanoni and
Forcina consider three hypothesis.

H0: The conditional distributions are identical.

H1: The distribution conditional on good = 1 dominates the distribution conditional on
good = 0 in the likelihood ratio order.

H2: The conditional distributions are unrestricted.

For each hypothesis H0, H1, and H3, the test computes the maximum likelihood estimates
under multinomial sampling, subject to the hypothesis. It then computes log-likelihood
ratio statistics for H0 vs. H1 and H1 vs. H2. Dardanoni and Forcina derive asymptotic
distributions of these statistics and use a simulation method to compute p-values. In the
paper, as well as in here, we report these p-values. The test accepts the hypothesis of
interest H1 if it rejects H0 in favor of H1 and fails to reject H1 in favor of H2.

For an asymptotic distribution to be a good approximation of our finite sample dis-
tribution, the number of intervals k should be sufficiently small. Following Roosen and
Hennessy (2004), we divide time gap into k intervals that are equiprobable according to
the empirical unconditional distribution of time gap. In our benchmark specification, we
use k = 7.

3 Alternative Specifications

We now explore how our results change or do not change under alternative specifications.
First, not all stocks are listed for y ∈ {3, 5} years. Instead of omitting delisted stocks from
the analysis, following Ritter (2003), we define goody

i by comparing the return of IPO i
with the market return at the earlier of the delisting date or the y-year anniversary of the
IPO. We then run the Dardanoni and Forcina test on this modified dataset. We report our
results in row S1 in Table 1. The results are in line with our main specification.

Second, we explore a different way to tell good from bad firms, namely defining good
(bad) firms as those with y ∈ {3, 5} years performance relative to market returny

i /market returny
i

above (below) the median IPO over the whole sample from 1983 to 2016. We report our
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Table 1: Dardanoni and Forcina test for likelihood ratio order. Alternative specifications.
3 years 5 years

S1 H0 vs H1 0.045 0.003
H1 vs H2 0.002 0.315

obs. 693 693

S2 H0 vs H1 0.029 0.001
H1 vs H2 0.000 0.000

obs. 529 403

k = 5 H0 vs H1 0.001 0.000
H1 vs H2 0.001 0.549

obs. 529 403

k = 9 H0 vs H1 0.003 0.000
H1 vs H2 0.000 0.319

obs. 529 403

results in row S2 in Table 1. In this case, while the test continues to reject the hypothesis
H0 in favor of H1, it also rejects the hypothesis H1 in favor of the unrestricted hypothesis
H2.

Finally, we check whether our results are robust to different choices of the number of
equiprobable intervals k. We report our results in rows k = 5 and k = 9 in Table 1.
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